Расчет подкрановой балки

1.Выбор стали и расчетных сопротивлений

для основного и наплавного металла.

По табл.50 СниП 11-23-81* [3] для группы конструкций 1 и климатического района 114 принимаем сталь обыкновенного качества С255 по ГОСТ 27772-88.

По табл.51 норм [3] для стали С255 при толщине листового широкополосного проката стенки балки от 10 до 20 мм назначаем предел текучести Ryn = 245 МПа, временное сопротив­ление R un = 370 МПа и расчетное сопротивление по пределу текучести Ry = 240 МПа. Аналогичные прочностные показатели для стали поясов балки с толщиной проката от 20 до 40 мм будут : Ryn = 235 МПа, Run = 370 МПа, Ry = 230 МПа.

По табл.1 СНиП [3] вычисляем для стенки расчетное сопротивление стали на сдвиг (срез) : Rs = 138.6 МПа ,

где gm =1.025 – коэффициент надежности по материалу в соответствии с п.3.2.

норм [3].

По табл. 4* и 55 СНиП [3] для автоматической сварки под флюсом, группы конструкций 1, климатического района 114 , стали С255 принимаем сварочную проволку Св-08АГ по ГОСТ 2246-70* .

По табл. 56 норм [3] для выбранного сварочного материала назначаем расчетное сопротивление углового шва по металлу шва Rwf = 200 МПа.

По табл.3 [3] вычисляем расчетное сопротивление по границе сплавления :

Rwz = 0.45*Run = 0.45*370 = 166.5 МПа.

Устанавливаем критерий расчетных сопротивлений угловых швов по п .11.2* СНиП-23-81* при Ryn < 285 МПа для автоматической сварки :

Rwz < Rwf £ Rwz *,

Rwz = 166.6 МПа < Rwf = 200 МПа > 166.5*= 174 МПа.

Здесь bz = 1.15 и bf = 1.1 – коэффициенты проплавления шва по табл. 34* [3].

Невыполнение неравенства означает, что дальнейший расчет следует вести по металлу границы сплавления.

2.Подсчет нагрузок на балку.

Вертикальное давление колеса крана :

F = Fn * gf * kd * y * gn = 85*1.1*1.1*0.95*0.95 = 92.82 кН.

Здесь – Fn = 85 кН – нормативная сила вертикального давления колеса

крана на рельс, принятые для стандартных кранов по

ГОСТ6711–81 ;

– gf = 1.1 – коэффициент надежности по нагрузке согласно п.4.8 СНиП 2.01.07 – 85 [1]

– kd1 = 1.1 – коэффициент динамичности для группы режима работы крана 7К

– y = 0.95 – коэффициент сочетаний нагрузок по п.4.17 [1] для группы

режима крана 7К .

– gf = 0.95 – коэффициент надежности по назначению для зданий 11 класса

ответственноси

Нормативное значение горизонтальной нагрузки, направленное поперек кранового пути, на каждое ходовое колесо крана, вызываемое перекосами мостового крана и принимаемое при расчете подкрановых балок с группой режима работы 7К составит :

Tn = 0.1*Fn = 0.1*85 = 8.5 кН.

Горизонтальное боковое давление колеса крана от поперечного торможения тележки :

T=Tn *gf *kd2 * gn = 8.5*1.1*1.1*0.95*0.95= 9.28 кН,

где kd2 = 1.1 коэффициент динамичности по п.4.9. норм [1].

3.Определение максимальных усилий .

Согласно теореме Винклера, наибольший изгибающий момент от системы подвижных грузов Мmax возникает в том случае, когда середина балки делит пополам расстояние между равнодействующими всех грузов Rf и ближайшим критическом грузом Rcr [8].

При схеме загружения положение равнодействующих четырех сил Rf = 4F относительно оси левого крайнего груза z будет :

åМ1 = 0 ;

z = =

= K + d = 3.7 + 0.5 = 4.2 м

Расстояние между критическим грузом и равнодействующей c = z – Вc = – 0.5 м

Знак минус означает, что критический груз находится правее равнодействующей.

Расстояние от критического груза до опор

а = 6.25 м

b = l – a = 12 – 6.25 = 5.75 м

Проверяем критерий правильности установки кранов :

>

<

Условие выполняется, следовательно, установка кранов является расчетной.

Здесь Ra и Rb – равнодействующие грузов соответственно слева и справа от критического.

Критический груз Fcr и равнодействующая Rf находятся на равных расстояниях от середины пролета балки 0.5с = 0.25 м .

4.Определяем максимальные расчетные усилия.

Расчетные усилия в подкрановой балке определяем с помощью построения эпюр М и Q.

Опорные реакции в балке при загрузке двумя кранами составят :

å Мв = 0 : Va*L – F*(L – L1 ) – F*(L – L2 ) – F*(L – L3 ) – F*(L – L4 ) = 0

Va = =

= 193.38 кН

Vв = Rf – Va = 4*92.82 – 193.38 = 177.9 кН

Максимальный момент от вертикальной нагрузки в сечении под критическим грузом, ближайшим к середине балки :

Mmax = M3 = Va *L3 – F*(L3 – L1 ) – F*(L3 – L2 ) =

= 193.38*6.25 – 92.82(6.25 – 1.55) – 92,82(6.25 – 5.25) =

= 679.551 кН*м.

Расчетный изгибающий момент с учетом собственного веса подкрановой конструкции и возможной временной нагрузки на тормозной площадке

Mf = Mx = a*Mmax = 1.05*679.551 = 713.53 кН*м,

где a=1.05 – коэффициент учета собственого веса для балки пролетом 12 м.

Соответствующая ему расчетная поперечная сила

Qc = a (Va – 3F) = 1.05*( 193.38 – 3*92.82 ) = – 89.33 кН.

Наибольший изгибающий момент от расчетных горизонтальных сил, вызванных перекосами моста крана :

Mt = My = Mmax = 679.55*0.1 = 67.96 кН*м.

Максимальная поперечная сила на опоре при расположении системы из двух кранов = наибольшей опорной реакции :

åMb = 0 : Va *L – F*L – F*(L – L’1 ) – F*(L – L’2 ) – F*(L – L’3 ) = 0

Qmax = Va = =

= 241.33 кН.

Расчетные значения поперечной силы от вертикальной нагрузки :

Qf = aQmax = 1.05*241.33 = 253.4 кН.

Максимальный нормативный момент в балке от загружения её одним краном, установленным на max M :

Опорные реакции :

åMа = 0 : Vb = 117.76 кН

åy = 0 : Va = 2*Fn *gn – Vb = 2*85*0.95 – 117.76 = 43.74 кН.

Нормативный момент Mn = M2 = Va *L1 = 43.74*6.25 = 273.38 кН.

Максимальный нормативный момент с учетом собственного веса балки

Mf,n = aMn = 1.05*273.38 = 287 кН.

5. Компановка и предварительный подбор сечений элементов составной балки.

Проектируем составную балку с более развитым верхним поясом.

Исходная высота подкрановой балки h = = 0.1* 1200 = 120 cм = 1.2 м.

Коэффициент, учитывающий влияние горизонтальных поперечных нагрузок на напряжения в верхнем поясе подкрановой балки определяется по следующей формуле :

b = 1+2 = 1+ 2 = 1.15

h1 = b0 +l1 = 500+1000 = 1500 мм = 1.5 м

где b0 = 500 мм – привязка оси колонны ;

l = 1000 мм – параметр для кранов группы 7К

Минимальная высота балки из условия жесткости при предельном относительном прогибе ( для кранов 7К) :

hmin = 48.9 см

Предварительная толщина стенки

tw = мм

принимаем с учетом стандартных толщин проката tw = 10 мм.

Требуемый момент сопротивления балки

WX.R = 3907 см3

Высота балки с оптимальным распределением материала по несимметричному сечению при a=1.15

hopt = = = 79.2 см > hmin = 48.9 см ,

где a=1.1 – 1.5 – коэффициент ассиметрии.

Оптимальная высота балки из условия гибкости стенки

hopt = = = 90.9 см ,

где 100 – 140 при L = 12 м Þlw = 120.

Мимнальная толщина стенки балки из условия предельного прогиба

twf = 0.41 см.

Минимальная толщина стенки при проверке её по прочности от местного давления колеса крана :

tw, loc = = = 0.06 см ,

где – F1 = gf *Fn = 1.1*85 кН – расчетная сосредоточенная нагрузка ;

– gf1 = 1.3 – коэффициент надежности для кранов группы 7К, согласно п 4.8.[1];

– IR =1082 см4 – момент инерции кранового рельса типа КР – 70 .

Требуемая толщина стенки из условия прочности на срез без учета работы поясов :

tw,s см ,

где hw = h – 2*tf = 120 – 2*2 = 116 см – предварительная высота стенки.

Толщина стенки, соответствующая балке оптримальной высоты :

tw, opt = = = 0.74 см.

Высота стенки балки, соответствующая tw, opt

hw = tw *lw = 0.74*120 = 88.9 см.

Учитывая интенсивную работу мостовых кранов (группа 7К) и мведение при изготовлении отходов металла к минимуму, принимаем габариты стенки с некоторым запасом, округленные до стандартных размеров на холстолистовую прокатную сталь по ГОСТ 19903-74* hw * tw = 1250 *10 мм.

Требуемая площадь поперечного сечения ассиметричной балки

А =

151.5 см2 ,

где h = hw +2tf = 125 + 2*2 = 129 см – предварительная высота балки при

исходной толщине поясов tf = 2.0 см.

Площадь верхнего пояса :

Aft = 16.5 см2 .

Площадь нижнего пояса :

Afb = 5.97 см2 .

Принимаем пояса балки из широкополочной универсальной стали по

ГОСТ 82-72* сечением : верхний bft *tft = 300*14 мм ; Aft = 42 см2 > 17.1 см2 .

нижний bft *tft = 250*14 мм ; Aft = 42 см2 > 5.97 см2 .

Полная высота подкрановой балки

h = hw +2tf = 1250 + 2*14 = 1278 мм

Скомпанованное сечение отвечает основным консруктивно-технологическим требованиям, предъявляемым к элементам подкрановой балки, в том числе :

– равномерность распределения напряжений по ширине пояса

bft = 300 мм мм

bft = 300 мм < bf,max = 600 мм

– общая устойчивость балки

bft = 300 мм = 426 — 256 мм ;

– технологические требования на изготовление

bfb = 250 мм > bfb,min = 200 мм

tf = 14 мм < 3tw = 3*10 = 30 мм

– условие обеспечения местной устойчивости полки

< = 14.9

– условие обеспечения местной устойчивости стенки без укрепления её

продольным ребром жесткости

tw = 10 мм > = = 8 мм

– соотношение высоты балки к толщине стенки и пролету

<

<

6. Установление габаритов тормозной конструкции.

Сечение тормозной балки проектируем из листа рифленой стали (ГОСТ 8568–77*) толщиной tsh = 6 мм ( с учетом высоты рифов – 8 мм ) с наружным поясом из швеллера №16, в качестве внутреннего служит верхний пояс подкрановой балки.

Ширина тормозного листа :

bsh = ( b0 + λi ) – ( ∆1 + ∆2 + + ∆3 =

= (500+1000 ) – ( 100+20++ 40 = 1270 мм, где λ1 = 1000 мм – для режима 7К

1 = 100 мм, ∆2 = 20 мм и ∆3 = 40 мм – габариты опирания листа

При шаге колонн Всо l = 12 м наружный пояс тормозной балки помимо колонн опирается на промежуточную стойку фахверка с шагом Вfr = Bcol / 2 = 6 м.

7.Вычисление геометрических характеристик скомпанованного сечения.

Положение центра тяжести подкрановой балки относительно оси, проходящей по наружной плоскости нижнего пояса

yв =

= 65.7 cм

Расстояние от нейтральной оси х – х до наиболее удаленного волокна верхнего пояса

yt = h – yb = 1278 – 657 = 621 мм = 62.1 мм

Момент инерции площади сечения брутто относительно оси х – х

Ix =

=

= 469 379 см4 ,

где а1 = yв – tf -- ; a2 = yt ; a3 = yв

Момент инерции ослабления сечения двумя отверстиями d0 = 25 мм для крепления рельса КР – 70

Ix 0 = 2*d0 *tf *( yt= 2*2.5*1.4*(62.1 – 2 = 26 390 см4 .

Момент инерции площади сечения нетто относительно оси х – х

Ix,nt = Ix – Ix 0 = 469 379 – 26 390 = 442 989 см4

Моменты сопротивления для верхнего и нижнего поясов

Wft,x = 7 133 см3

Wfb,x = 6 743 см3

Cтатический момент полусечения для верхней части

Sx = Aft *(yt+ tw*

= 4 421 см3

Координат центра тяжести тормозной конструкции относительно центральной оси подкрановой балки у0 – у0

хс =

= 60 см,

где Ас = 18.1 см2 – площадь [ № 16, z0 = 1.8 см

Ash – площадь тормозного листа

Расстояние от нейтральной оси тормозной конструкции у – у до её наиболее удаленных волокон : xB = xc + 75 cм ха = (b0 + li ) – (∆1 + xc ) = 50 + 100 – ( 10 +60 ) = 80 cм.

Момент инерции полщадь сечения тормозной балки брутто относительно оси у – у

где Ix , Ift и Ic – соответственно моменты инерции тормозного листа, верхнего пояса

балки и наружного швеллера .

Момент инерции площади ослабления

Iy 0 = dc *tf *(xc – a)2 + d0 *tf *(xc + a)2 = 2.5*1.4*(60 – 10)2 + 2.5*1.4*(60+10)2 =

= 25 900 cм4 , где а = 100 мм.

Момент инерции площади сечения нетто относительно у – у

Iy,nt = Iy – Iy 0 = 383 539 – 25 900 = 357 639 cм4 .

Момент сопротивления для крайнего волокна в верхнем поясе подкрановой балки

Wt,y = .

8. Проверка подобранного сечения на прочность.

Нормальные напряжения в верхнем поясе

кН/cм2 = 114 МПа < Ryc = 230 МПа

то же в нижнем поясе

кН/cм2 = 106 МПа < Ryc = 230 МПа.

Касательные напряжения на опоре

τ 2.52 кН/см2 = 25.2 МПа < Rsc = 138.6*1=138.6 МПа

то же без учета работы поясов

τ

29-04-2015, 04:13


Страницы: 1 2
Разделы сайта