за турбобуром
За УБТ-178
За ТБПВ
Определим действительные числа Рейнольдса при течении жидкости в кольцевом пространстве по формуле (6.6): между ТБПВ и необсаженным стволом, диаметр которого примем равным внутреннему диаметру последней обсадной колонны dс = 0,22 м:
За ГЗД
За УБТ-178
За ТБПВ
Таким образом, в кольцевом канале режим течения ламинарный.
За турбобуром
за УБТ-178
за ТБПВ-127
Число Сен-Венана равно:
За ГЗД
За УБТ-178
За ТБПВ
Находим значения β по формулам (6.15):
За ГЗД
За УБТ-178
За ТБВК
Рассчитаем потери давления по длине кольцевого пространства на участке за ТБПВ до глубины слабого пласта по формуле (6.12):
За ГЗД
МПа
За УБТ-178
МПа
За ТБПВ
МПа
Местные потери от замков ЗП-127 в кольцевом пространстве определяем по формуле (6.16). Согласно табл. 5.7 dм = 0,127м. Примем ℓт = 12 м.
м/с
МПа
Суммируя значения Р, получим
МПа
Вычисляем потери давления внутри бурильной колонны. Для этого определяем критические числа Рейнольдса по формуле (6.4):
В ТБПВ
В УБТ-178
Находим действительные числа Рейнольдса жидкости в бурильных трубах и УБТ, составляющих бурильную колонну, по формуле (6.5):
В ТБПВ
В УБТ-178
Так как Reт > Reкр , то в колонне везде течение турбулентное.
Вычисляем значения коэффициентов гидравлического сопротивления по формуле (6.9):
В ТБПВ
В УБТ-178
Рассчитаем потери давления внутри ТБКВ и УБТ по формуле (6.7):
В ТБПВ
МПа
В УБТ-178
МПа
Местные потери от замков ЗП-127 в колонне определяем по формуле (6.17):
МПа
Вычислим потери давления в наземной обвязке по формуле (6.18), предварительно найдя из табл. 6.1. значения коэффициентов:
МПа
Вычислим сумму потерь давления во всех элементах циркуляционной системы, за исключением потерь давления в долоте по формуле (6.3):
Рассчитываем резерв давления ∆Рр для потерь в долоте по формуле (6.21) при в = 0,8:
МПа
Определим возможность использования гидромониторного эффекта, вычислив скорость течения жидкости в насадках долота по формуле (6.22) при μ = 0,95:
м/с
Так как υд > 80 м/с и перепад давления ΔРд =1,658 МПа < ΔРкр = 11,342 МПа, то бурение данного интервала возможно с использованием гидромониторных долот.
Приняв υд = 80 м/с, найдем перепад давления в долоте по формуле (5,10):
МПа
тогда расчетное рабочее давление в насосе составит
Рн = 1,658 · 106 + 3,55∙106 = 5,208 МПа
Находим площадь промывочных отверстий долота по формуле (6.24):
Ø = м2
В долоте устанавливаем три насадки. Их внутренний диаметр определяем по формуле (6.25):
м
8)Интервал 1560-1700м-для ГЗД
Произведем вторую проверку подачи промывочной жидкости.
Определим критическую плотность промывочной жидкости, при которой может произойти гидроразрыв наиболее слабого из пластов, слагающих разбуриваемый материал по формуле (6.1).
Для этого необходимо предварительно вычислить параметры φ и ∑(Ркп) . Значение φ рассчитаем по формуле (6.2) с помощью найденных в п. 7.5 скорости механического бурения:
и в п. 7.3 расхода Q = 0,038м3 /с:
т.е. содержание шлама в потоке (1-φ) = 0 т.к. скорость мала.
Для определения величины ∑(Ркп) найдем линейные и местные потери давления в затрубном пространстве до глубины залегания подошвы слабого пласта. Рассчитаем критическое значение числа Рейнольдса промывочной жидкости Rе кр , при котором происходит переход ламинарного режима в турбулентный, по формуле (6.4) для течения в кольцевом канале:
за турбобуром
За УБТ-178
За ТБПВ
Определим действительные числа Рейнольдса при течении жидкости в кольцевом пространстве по формуле (6.6): между ТБПВ и необсаженным стволом, диаметр которого примем равным внутреннему диаметру последней обсадной колонны dс = 0,22 м:
За ГЗД
За УБТ-178
За ТБПВ
Таким образом, в кольцевом канале режим течения ламинарный.
За турбобуром
за УБТ-178
за ТБПВ-127
Число Сен-Венана равно:
За ГЗД
За УБТ-178
За ТБПВ
Находим значения β по формулам (6.15):
За ГЗД
За УБТ-178
За ТБПВ
Рассчитаем потери давления по длине кольцевого пространства на участке за
ТБПВ до глубины слабого пласта по формуле (6.12):
За ГЗД
МПа
За УБТ-178
МПа
За ТБВК
МПа
Местные потери от замков ЗП-127 в кольцевом пространстве определяем по формуле (6.16). Согласно табл. 5.7 dм = 0,127м. Примем ℓт = 12 м.
м/с
МПа
Суммируя значения Р, получим
МПа
Вычисляем потери давления внутри бурильной колонны. Для этого определяем критические числа Рейнольдса по формуле (6.4):
В ТБПВ
В УБТ-178
Находим действительные числа Рейнольдса жидкости в бурильных трубах и УБТ, составляющих бурильную колонну, по формуле (6.5):
В ТБПВ
В УБТ-178
Так как Reт > Reкр , то в колонне везде течение турбулентное.
Вычисляем значения коэффициентов гидравлического сопротивления по формуле (6.9):
В ТБПВ
В УБТ-178
Рассчитаем потери давления внутри ТБПК и УБТ по формуле (6.7):
В ТБПВ
МПа
В УБТ-178
МПа
Местные потери от замков ЗП-127 в колонне определяем по формуле (6.17):
МПа
Вычислим потери давления в наземной обвязке по формуле (6.18), предварительно найдя из табл. 6.1. значения коэффициентов:
МПа
Вычислим сумму потерь давления во всех элементах циркуляционной системы, за исключением потерь давления в долоте по формуле (6.3):
Рассчитываем резерв давления ∆Рр для потерь в долоте по формуле (6.21) при в = 0,8:
МПа
Определим возможность использования гидромониторного эффекта, вычислив скорость течения жидкости в насадках долота по формуле (6.22) при μ = 0,95:
м/с
Так как υд > 80 м/с и перепад давления ΔРд =4,371 МПа < ΔРкр = 8,669 МПа, то бурение данного интервала возможно с использованием гидромониторных долот.
Приняв υд = 80 м/с, найдем перепад давления в долоте по формуле (5,10):
МПа
тогда расчетное рабочее давление в насосе составит
Рн = 4,371 · 106 + 3,55∙106 = 7,921 МПа
Находим площадь промывочных отверстий долота по формуле (6.24):
Ø = м2
В долоте устанавливаем три насадки. Их внутренний диаметр определяем по формуле (6.25):
м
9)Интервал 1700-1822м-для ГЗД
Определим критическую плотность промывочной жидкости, при которой может произойти гидроразрыв наиболее слабого из пластов, слагающих разбуриваемый материал по формуле (6.1).
Для этого необходимо предварительно вычислить параметры φ и ∑(Ркп) . Значение φ рассчитаем по формуле (6.2) с помощью найденных в п. 7.5 скорости механического бурения:
и в п. 7.3 расхода Q = 0,038м3 /с:
т.е. содержание шлама в потоке (1-φ) = 0 т.к. скорость мала.
Для определения величины ∑(Ркп) найдем линейные и местные потери давления в затрубном пространстве до глубины залегания подошвы слабого пласта. Рассчитаем критическое значение числа Рейнольдса промывочной жидкости Rе кр , при котором происходит переход ламинарного режима в турбулентный, по формуле (6.4) для течения в кольцевом канале:
за турбобуром
За УБТ-178
За ТБПВ
Определим действительные числа Рейнольдса при течении жидкости в кольцевом пространстве по формуле (6.6): между ТБПВ и необсаженным стволом, диаметр которого примем равным внутреннему диаметру последней обсадной колонны dс = 0,22 м:
За ГЗД
За УБТ-178
За ТБПВ
Таким образом, в кольцевом канале режим течения ламинарный.
За турбобуром
за УБТ-178
за ТБПВ-127
Число Сен-Венана равно:
За ГЗД
За УБТ-178
За ТБПВ
Находим значения β по формулам (6.15):
За ГЗД
За УБТ-178
За ТБПВ
Рассчитаем потери давления по длине кольцевого пространства на участке за ТБПВ до глубины слабого пласта по формуле (6.12):
За ГЗД
МПа
За УБТ-178
МПа
За ТБПВ
МПа
Местные потери от замков ЗП-127 в кольцевом пространстве определяем по формуле (6.16). Согласно табл. 5.7 dм = 0,127м. Примем ℓт = 12 м.
м/с
МПа
Суммируя значения Р, получим
МПа
Вычисляем потери давления внутри бурильной колонны. Для этого определяем критические числа Рейнольдса по формуле (6.4):
В ТБПВ
В УБТ-178
Находим действительные числа Рейнольдса жидкости в бурильных трубах и УБТ, составляющих бурильную колонну, по формуле (6.5):
В ТБПВ
В УБТ-178
Так как Reт > Reкр , то в колонне везде течение турбулентное.
Вычисляем значения коэффициентов гидравлического сопротивления по формуле (6.9):
В ТБПВ
В УБТ-178
Рассчитаем потери давления внутри ТБКВ и УБТ по формуле (6.7):
В ТБПВ
МПа
В УБТ-178
МПа
Местные потери от замков ЗП-127 в колонне определяем по формуле (6.17):
МПа
Вычислим потери давления в наземной обвязке по формуле (6.18), предварительно найдя из табл. 6.1. значения коэффициентов:
МПа
Вычислим сумму потерь давления во всех элементах циркуляционной системы, за исключением потерь давления в долоте по формуле (6.3):
Рассчитываем резерв давления ∆Рр для потерь в долоте по формуле (6.21) при в = 0,8:
МПа
Определим возможность использования гидромониторного эффекта, вычислив скорость течения жидкости в насадках долота по формуле (6.22) при μ = 0,95:
м/с
Так как υд > 80 м/с и перепад давления ΔРд =1,658 МПа < ΔРкр = 11,342 МПа, то бурение данного интервала возможно с использованием гидромониторных долот.
Приняв υд = 80 м/с, найдем перепад давления в долоте по формуле (5,10):
МПа
тогда расчетное рабочее давление в насосе составит
Рн = 1,658 · 106 + 3,55∙106 = 5,208 МПа
Находим площадь промывочных отверстий долота по формуле (6.24):
Ø = м2
В долоте устанавливаем три насадки. Их внутренний диаметр определяем по формуле (6.25):
м
9.4 Построение графика давлений
Для построения графика распределения давления в циркуляционной системе определяем следующие величины:
1) гидростатическое давление на забое скважины (при отсутствии циркуляции) для двух случаев:
а) в скважине, заполненной промывочной жидкостью плотностью ρ, по формуле
Рс = ρ · q · L=1150·9,81·1822=20,55МПа
где L – глубина забоя скважины, м;
б) в скважине, заполненной той же жидкостью, но содержащей частицы выбуренной породы плотностью ρш ,
Pc ' = φ·ρ·q·L+(1-φ)·ρш ·q·L= 0,999·1150·9,81·1822+(1-0,999)·2350·9,81·1822 =
20,57 МПа
Построим график распределения давления в циркуляционной системе .
1. Слева изобразим геометрию кольцевого канала и компоновку бурильного инструмента с соблюдением вертикального масштаба.
2. Проводим горизонтальные линии через точки соединения различных элементов бурильной колонны:
1-1 – соединение ТБПК с УБТ-165;
2-2 – соединении УБТ-165 с УБТ-178
3-3 – соединение УБТ-178 с турбобуром (забойным двигателем) либо УБТ-178 с долотом
4-4 – соединение турбобура (забойного двигателя) с долотом – забой скважины.
3. Откладываем значения Рс и Рс ΄ по горизонтали 4-4, получим точки d и d΄.
4. Соединив точки d и d΄ с началом координат, получим линии изменения гидростатического давления в затрубном пространстве. В пересечении линии Od΄ с горизонталями 1-1, 2-2 и 3-3 получим точки а, в и с.
5. От а, в, с и d по горизонталям вправо откладываем значения суммарных гидродинамических потерь давления получаем точки а΄, в΄, с΄ и d΄.
При этом длина отрезков равна:
аа’=Δpкп ТБПК + Δpмк ТБПК
вв’= Δpкп ТБПК + Δpмк ТБПК + Δpкп УБТ-146
сс’= Δpкп ТБПК + Δpмк ТБПК + Δpкп УБТ-146 + Δpкп УБТ-178
d’d”= Δpкп ТБПК + Δpмк ТБПК + Δpкп УБТ-146 + Δpкп УБТ-178 +Δpкп турбобур
6. Соединив точки О, а΄, в΄, с΄ и d˝ построим кривую изменения гидродинамического давления в затрубном пространстве при циркуляции.
7. Из точки d˝ восстанавливаем вертикаль до пересечения с осью давлений. Получаем точку, соответствующую величине забойного давления при бурении скважины Рз .nn΄
8. Через точку d˝ проводим прямую, Оd. В пересечении с горизонталями получим точки k, m, n и точку s в пересечении с осью давлений.
9. Отложив по горизонтали от точки d˝ отрезок, соответствующей перепаду давления в долоте, получаем точку е. При этом длина d”e=ΔpТб.
10. Длина отрезка kk΄ равна сумме перепадов давления в долоте ∆Рд и турбобуре ∆Ртб .
11. длины отрезков mm΄, nn΄, ss΄ определяем по формуле:
mm’= Δpд + Δpтб + Δpт УБТ-178
nn’= Δpд + Δpтб + Δpт УБТ-178 + Δpкп УБТ-146
ss’= Δpд + Δpтб + Δpт УБТ-178 + Δpкп УБТ-146 +Δpмт ТБПК
Р = ∆Рд + ∆Ртб + Σ(∆Ртi ),
где Σ(∆Ртi ) - суммарное гидродинамические потери давления внутри i-й секции бурильной колонны.
12. Вправо от точки s΄ откладываем отрезок, равный потерям давления в наземной обвязке ∆Ро . Получаем точку, соответствующую давлению в насосе Рн .
13. Соединив точки е, k΄, m΄, n΄, s΄, Рн получаем график изменения давления от забоя скважины до насоса.
1 – Долото;
2 – УБТ ;
3 – ТБПВ-127;
4 – кондуктор;
5 – слабый пласт.
10.2 Расчет профиля скважины №921-Р ( типа Б)
1. Данные для расчета профиля:
2. Вертикальная проекция ствола скважины Н0 =1822м;
3. Отклонение забоя скважины от вертикали А=75.5м;
4. Интенсивность падения кривизны i2 =2,50 на 100м ствола скважины;
5. Конечный зенитный угол αк =10,90 ;
6. Интенсивность набора зенитного угла i1 =140 на 100м. ствола скважины.
Решение:
1. Определим необходимый максимальный зенитный угол для получения проектного профиля ствола скважины:
2. вычисляем вертикальную проекцию не вертикальной части ствола скважины:
3. найдем длину верхнего вертикального участка ствола скважины:
4. рассчитаем длину участка набора кривизны:
5. Найдем горизонтальную проекцию участка набора зенитного угла:
6. Определим вертикальную проекцию участка набора кривизны:
7. рассчитаем радиус искривления ствола скважины на участке снижения зенитного угла:
8. Найдем длину участка снижения зенитного угла:
9. рассчитаем горизонтальную проекцию участка падения кривизны:
10. Вычисляем вертикальную проекцию участка падения кривизны:
11. определим общую длину ствола скважины:
12. найдем удлинение ствола скважины за счет скважины:
Произведем построение профиля ствола
29-04-2015, 00:57