Проявление симметрии в различных формах материи

что приводит к волне, бегущей через весь кристалл. Природа этих волн может быть очень разнообразной - звуковой, магнитной, электрической и т.д. Согласно общим законам квантовой механики, эти волны возникают и передаются только в виде квантов энергии. Последние во многом аналогичны обычным частицам, и их называют квазичастицами. Поскольку природа их определяется структурой и химическим составом кристаллов, то их разнообразие значительно более широко, чем разнообразие истинных частиц.Сейчас известны такие квазичастицы, как фотоны (кванты звука), электроны проводимости, магноны (спиновые волны), эквитоны, поляритоны (светоэкзитоны) и многие дручие. Важность введения квазичастиц в теорию твердого тела состояла в том, что во многих случаях кристалл оказалось возможным трактовать с позиций невзаимодействующих или слабо взаимодействующих квазичастиц.

Известно, что механику истинных частиц пронизывает принцип относительности, выраженный лоренцовыми преобразованиями. Этот принцип выражает однородность, изотропность пространства и однородность времени, с которыми связаны разные законы сохранения. Это проявляется также и в универсальности для механики всех истинных частиц зависимости энергии E от импульса p: __________

Е=√ E +c p

Где Е т с - энергия покоя, т – масса поко, с – скорость света в вакууме.

Если с/м<<c , то есть вне релятивистской области, то Е=р /2т .

Это обычный квадратичный закон дисперсии.

Однако с переходом к квазичастицам положение радикально меняется! И это прямо связано с резко иным характером малых кристаллических пространств по сравнению с «пустым» пространством малого. Очень четко и интересно резюмируют результаты такого перехода И.М. Лившиц и В.М. Агранович. Они пишут, что для квазичастиц положение радикально меняется, потому что «квазичастицы не в пустом пространстве,, не в вакууме, а в кристаллическом пространстве, которое имеет симметрию, отвечающую соответствующей пространственной группе кристалла. В связи с этим имеется выделенная система отсчета и нет прежнего принципа относительности. Поэтому нет и закона дисперсии, который имеет место для истинных частиц. Вместо этого возникает сложный закон дисперсии Е=Е(р), причем вместо импульса приходится говорить о квазиимпульсе, ибо пространство уже неоднородно и закон сохранения импульса, который является точным законом в однородном пространстве, в кристаллическом пространствевыполняется с точностью до целочисленного вектора обратной решетки, умноженной на h .

Закон дисперсии для квазичастиц существенно отличается от элементарного закона Е=р /2т . Во-первых, Е(р) – периодическая функция р с периодом, равным периоду обратной решетки, умноженному на h. Во- вторых, имеется, вообще говоря, резкая анизотропия этого закона дисперсии и, следовательно, анизотртпия всех свойств, определяемых квазичастицами»ю

Далее. Для истинных частиц в зависимости Е=р /2т каждому Е соответствуют поверхности, называемые поверхностями Ферми. В данном случае это просто сферы, радиус которых растет пропорционально √Е. Для квазичастиц уже в пространстве квазиимпульсов функции Е=Е(р) при каждом заданном Е соответствует периодически повторяющийся набор поверхностей Ферми, которые иногда могут смыкаться в одну поверхность, проходящую через все пространство. Придавая Е различные значения и изображая графически в итоге всю функцию Е= Е(р), можно передать рисунком все черты динамики квазичастиц. Получающиеся при таком подходе изображения топологически очень сложны и чрезвычайно напоминают абстрактные скульптуры. Они резко отличаются от примитивных по форме сфер.

Подобно истинным частицам одни из квазичастиц подчиняются статистике Бозе- Эйнштейна и являются, стало быть, бозонами, другие – Ферми-Дирака и являются фермионами.Но не всегда статистика квазичастиц совпадает со статистикой истинных частиц. Так, в системе электронов имеются квазичастицы-плазмоны, являющиеся бозонами, хотя, как известно, свободные электроны являются фермионами.

2.КРИСТАЛЛЫ

­­­­­­­

2.2.1. История познания кристаллографической симметрии

Под кристаллографической симметрией в узком, или точном, смысле обычно понимают такую симметрию (кристаллов), группы которой могут быть полностью описаны с помощью простых, винтовых и зеркальных осей 1,2,3,4 и 6-го порядка оси переносов и плоскости скользящего отражения. При этом трансляции, связанные с плоскостями скользящего отражения и винтовыми осями, часто представляются конечными.

Кристаллографическая, или структурная, симметрия в широком смысле от этих ограничений освобождена. Она включает первую как свой частный случай и стало быть в принципе может быть представленагруппами и симметрией, опивываемыми простыми, зеркальными и винтовыми осями любых, в том числе 5,7,8,…,∞ порядков, а также осями переносов и плоскостями скользящего отражения.

В истории познания Кристаллографической симметрии следует остановиться на трех моментах, характеризующих диалектичность процесса познания.

Во-первых, познание симметрии кристаллов и кристаллографической симметрии шло по спиралям путем отрицания отрицания. Именно: от живого созерцания – блещущей внешней формы кристаллов – к абстрактному мышлению – их внутреннему решетчатому строению, а от него, с одной стороны, к практике – к величайшему использованию кристаллов в производстве и в быту, с другой- снова к внешней форме кристаллов, но увиденной уже и изнутри.

Во-вторых, в познании кристаллографической симметрии весьма интересна сама история названия этого вида симметрии.Учение о ней, первоначально воз­никнув вне связи с изучением кристаллов, а затем тесно с ним переплетаясь и получив свое наименова­ние, решительно вышло — не без старания самих кри­сталлографов — за рамки чисто «кристаллического» представления о симметрии. И здесь снова шел слож­ный диалектический процесс познания.

Третий момент отмечен В. И. Вернадским: «Кристаллография, — пишет он, — стала наукой только тогда, когда первые основатели кристаллографии в XVII в. Гульельмини и Стеноп, а главным образом в XVIII в. Роме де Лиль, Гаюи правильно приняли за основу построения научного исследования одно свойство природных кристаллов как основное и оста­вили без внимания отклонения в наружной форме кристаллов от идеальных многогранников геометрии как вторичные. Этим единым исходным свойством был принят правильно закон постоянства гранных углов, открытый независимо Гульельмини и Стснсепом, так называемый закон Стенопа. Вторичными свойствами явились размеры и форма кристаллических пло­скостей и ребер кристаллических многогранников. Ис­ходя из этого построили реальные полиэдры—модели природных кристаллов, в которых ребра и плоскости, теоретически являющиеся функцией гранных углов, выявились в своей реальной величине и форме, на­рушенных в природных кристаллах проявлением по­верхностных сил.

Эти силы оставлены были вначале без внимания.

Так получились идеальные полиэдры геометрии. Такие полиэдры были впервые построены Роме де Лилем в XVIII столетии. Они называются кристалли­ческими многогранниками». Идеальные по своей форме кристаллы стали рассматриваться как... реальные с истинной симмет­рией, а отклоняющиеся от них — как ложные с ис­каженной симметрией. Первые в природе встречаются один на одну или даже несколько тысяч, с большим трудом их удается получить в лабораторных усло­виях. Вторые составляют, если можно так выразить­ся, сверхподавляющую часть природных кристаллов. Они легко получаются в лабораторных условиях.

Результат такой ориентации известен: на протяже­нии столетий наиболее часто встречающиеся, а потому поистине реальные «ложные» кристаллы с искажен­ной симметрией оставались вне поля зрения кристал­лографов, что отрицательно сказалось на общем уров­не учения о реальных кристаллах, Се.ичас положение выправляется. И все же в таких поворотах внимания кристаллографов было некоторое оправдание: невоз­можно изучать само отклонение, не зная того, от чего оно отклоняется...

Закон постоянства гранных углов Стенона впослед­ствии дал начало учению о морфологической симмет­рии кристаллов — основе учения о симметрии любых фигур с особенной точкой. Напомним слова А.В Шубникова об особенных элементах фигуры: «Точка (пря­мая, плоскость) фигуры (или ее части) называется особенной, если она совмещается с собою всеми опе­рациями фигуры (или ее части). Особенные геомет­рические элементы существуют в фигурах в единст­венном числе». Центр сферы, ось конуса, поперечная плоскость цилиндра—соответственно особенные точка, линия, плоскость; трехмерное пространство в класси­ческом учении о пространственной симметрии кристал­лов — также особенный геометрический элемент.

Существует несколько наименований фигур с осо­бенными точками. Чаще всего их называют конеч­ными или строже точечными фигурами, реже — фи­гурами симметрии нулевого измерения. Последние мо­гут быть разделены на две категории: фигуры без особенных плоскостей и фигуры с особенными плоско­стями. Все платоновы тела и шар принадлежат к фигурам первой категории. К фигурам второй кате­гории принадлежат так называемые розетки (одно- и двусторонние). Примеры односторонних розеток — фигуры пуговицы, цветка растения, насекомого, дет­ской бумажной вертушки, фигуры травления на гра­нях кристалла; примеры двусторонних розеток - ре­шетки ворот, колеса, кольца, платки с одинаковым ри­сунком с обеих сторон, буквы без лица и изнанки (П, Н, Ж ), снежинки, фигуры млекопитающих, ес­ли смотреть на них сбоку (при другой ориентации они предстанут уже в виде односторонних розеток). Таким образом, и у тех и у других розеток имеется одна особенная плоскость с особенной точкой в ней. При этом у односторонних розеток эта плоскость полярна, т. е. ее «лицо» отлично от «изнанки», а у дву­сторонних она не полярна и может являться поэтому плоскостью симметрии.

По-видимому, будет правильно связать развитие учения о симметрии нулевого измерения с построения­ми древними математиками таких типичных конечных фигур, как многоугольники и многогранники. Особое место здесь должно быть отведено пяти правильным платоновым многогранникам, которые Г. Вейль удач



но назвал древним эквивалентом некоторых современных классов групп симметрии конечных фигур.

Далее в изучении симметрии кри­сталлов наблюдается досадный более чем полуторатысячелетний перерыв. Возобновившийся после столь длительного застоя ход исследований в сухом пе­речне дат и фамилий выглядит так.

1611 г. — И. Кеплер указывает на сохранение уг­ла (в 60° между отдельными лучами у снежинок и гениально объясняет это их внутренним сложением из шарообразных частиц. 1669 г. — Н. Стенсен открыл закон постоянства углов у кристаллов кварца и гематита.

1670 г. — Э. Бартолин (1625—1698) то же свой­ство указал для кальцита; 1695 г. — А. Левенгук (1632—1723) — для гипса (малых и больших кри­сталлов); 1749 г. — М. В. Ломоносов (1711—1765) — для кристаллов селитры, пирита, алмаза и других, положив тем самым начало русской кристаллогра­фии.

Лишьь в 1783 г. Роме де Лиль (1736—1790) рас­пространил закон постоянства углов на все кристаллы, проведя десятки тысяч измерении на большом числе объектов. Результаты измерений — итог всей жизни — он систематически докладывал ученым в Париже. Эти сообщения и были первыми лекциями по кристаллографии. Закон постоянства углов фор­мулируется им в работе «Кристаллография» так: «Грани кристалла могут изменяться по своей форме и относительным размерам,но их взаимные наклоны постоянны и неизменны для данного рода кристал­лов» .

В 1784—1801 гг. Р. Ж. Гаюи (1743—1822), тща­тельно математически переработав данные Роме де Лиля, установил другой важнейший закон геометри­ческой кристаллографии — закон целых чисел (ра­циональных отношений параметров), с которым не­посредственно связан закон целых чисел в химии Дальтона (1808 г.), бывавшего в то время в Париже и слушавшего лекции Гаюи. Закон Гаюи формули­руется следующим образом: положение всякой гра­ни в пространстве можно определить тремя целыми числами, если за координатные оси взяты направле­ния трех ребер кристалла, а за единицу измерения — отрезки, отсекаемые на этих осях гранью кристалла, принятой за единичную. X. Венссом (1780—1856) в 1815 г. было предложено деление кристаллов на сингонии (сейчас они классифицируются на 7 сингоний, 3 категории). В итоге всех исследований были сделаны два великих открытия: открытие полных групп симметрии кристаллов — морфологической (1830 г.) и через 60 лет структурной (1890 г.). Пер­вое открытие на основе закона целых чисел сделал в 1830 г. малоизвестный при жизни марбургский профессор И. Ф. Гессель (1796—1872), геометрически доказавший, что внешняя форма кристаллов опи­сывается лишь 32 видами симметрии. Одновременно он разработал полную теорию симметрии конечных фигур и вывел бесконечное множество видов их сим­метрии. Однако эта работа осталась незамеченной. Те же 32 вида вновь, хотя и иным путем, открыл уже в 1867 т. русский ученый Л. В. Гадолин (1828—1892) . Замечательно, что при жизни последнего эм­пирически было известно лишь 20 видов симметрии кри­сталлов. Результаты Гесселя—Гадолина привели к вы­воду о том, что фигуры симметрии нулевого измерения полностью описываются бесконечным числом групп (видов). Увеличение числа групп симметрии с 32 до ∞ объясняется просто: за счет учета и запрещенных для кристаллов осей симметрии, т. е. 5, 7, 8, 9, 10,... и т. д., кроме ∞ , порядков. Причина этого запрета стала понятна лишь после раскрытия внутреннего строения кристаллов. Она связана с решетчатым рас­положением атомов, ионов и молекул, в трехмерном пространстве (О. Бравэ и др.).

История второго величайшего открытия связана с постепенной кристаллизацией понятия «кристалличе­ская решетка». Эта идея витала в воздухе. На нее исходя из разных соображений указывали многие.

Например, И. Кеплер приписывает кристал­ликам снежинок структуру, получающуюся при плот­ной укладке шариков одного диаметра. Аналогичные воззрения на структуру кристаллов каменной соли, квасцов и других веществ высказывались и Р. Гуком (1635—1703) в его «Микрографии» (Лондон, 1665). Однако Гук ограничивался рассмотрением расположе­ния шариков лишь на плоскости. Далее, И. Ньютон (1643—1724) в «Оптике» (1675 г.) также предполагал, что при образовании кристаллов частицы уста­навливаются в строй и ряды, поворачивая свои оди­наковые стороны в одинаковом направлении и застывая в правильных фигурах. Аналогичные мысли высказывали Д. Гульельмини, X. Гюйгенс (1629—1695), М. Ломоносов и многие другие.

Пытаясь объяснить закон целых чисел, Гаюи на углах кристаллической решетки ставил многогранные молекулы; лишь в 1813 г. У. X. Волластон (1766— 1828) заменил их шарами или просто математиче­скими точками: тем самым идея кристаллической ре­шетки приняла вполне современный вид. Основываясь на достигнутом, О. Бравэ в 1848 г. устанавливает, что всех типов кристаллических решеток лишь 14 . Поч­ва для вывода всех пространственных групп симмитрии кристаллов уже как бесконечных фигур была готова.

Не позднее 1869 г. К. Жордан (1838—1922) в «Мемуаре о группах движений» находит 65 из них, со­держащих только собственные (незеркальные) дви­жения; Л. Зонке (1842—1897) применил эти группы в 1879 г. к кристаллографии. Вывод всех 230 прост­ранственных групп симметрии был дан почти одно­временно и независимо друг от друга Е. С. Федоро­вым в России (1890 г.) геометрически и А. Шенфлисом (1853—1928) в Германии (1891 г.) алгебраиче­ски на основе теории групп.

Открытия Федорова—Шонфлиса завершают целую эпоху в изучении симметрии в природе, и прежде всего кристаллов. Они позволили дать глубокое, исто­рически первое — кристаллографическое учение о симметрии, оказавшееся частным случаем второго, геометрического, а затем и более фундаментального, одновременно и самого абстрактного (динамического) понимания симметрии.

2. 2.2.Симметрия кристаллов.

Правильную, симметричную форму кристаллов издавна объясняли симметричным расположением атомов. Само существование атомов было еще гипотезой, но внешнее проявление стройного порядка заставляло предполагать внутреннюю причину. Быть может, правильные пирамиды, сложенные из пушечных ядер, которые когда-то делались круглыми, наводили на мысль, что огранка кристаллов обязана способсти атомов самостоятельно укладываться в стройном порядке. Слово атом значит неделимый, атомы считали такими же круглыми, гладкими и твердыми, как ядра.

Как ни примитивен такой взгляд с нашей нынешней точки зрения, он оказался необычайно плодотворным в науке о кристаллах, где и сейчас есть понятие плотной упаковки, такой, как в пирамиде, сложенной из шаров.

Давнее, чисто умозрительное учение о строении кристаллов принесло большую пользу еще и потому, что позволило правильно подойти к вопросу о возможных видах симметрии кристаллов.

Симметрия кристаллов-свойство кристаллов совмещаться с собой при поворотах, отражениях, параллельных переносах либо при части или комбинации этих операций. Симметрия внешней формы кристалла определяется симметрией его атомного строения, которая обуславливает также и симметрию физических свойств кристалла.

В наиболее общей формулировке симметрия- неизменность (инвариантность) объектов и законов при некоторых преобразованиях описывающих их переменных. Кристаллы – объекты в трехмерном пространстве, поэтому классическая теория симметрии кристаллов- теория симметричных преобразований в себя трехмерного пространства с учетом того,что внутренняя атомная структура кристаллов дискретная, трехмерно- периодическая. При преобразованиях симметрии пространство не деформируется, а преобразуется как жесткое целое. Такие преобразования называются ортогональными или изометрическими. После преобразования симметрии части объекта, находившиеся в одном месте, совпадают с частями, находившимися в другом месте. Это означает, что в симметричном объекте есть равные части (совместимые или зеркальные).

Симметрия кристаллов проявляется не только в их структуре и свойствах в реальном трехмерном пространстве, но также и при описании энергетического спектра электронов кристалла, при анализе процессов дифракции нейтронов и дифракциииэлектронов в кристаллах с использованием обратного пространства.


Кристаллу может быть присуща не одна, а несколько операций симметрии. Так, кристалл кварца (рис.1,а) совмещается с собой не только при повороте на 120°вокруг оси 3 (операция g1), но и при повороте вокруг оси 3 на 240° (операция g2), а также при поворотах на 180° вокруг осей 2x, 2y, 2w(операции g3, g4, g5). Каждой операции симметрии может быть сопоставлен элемент симметрии – прямая, плоскость или точка, относительно которой производится данная операция. Например, ось 3 или оси 2x, 2y, 2w являются осями симметрии, плоскость m (рис.1,б). – плоскостью зеркальной симметрии и т.п. Совокупность операций симметрии {g1, g2,…,gN} данного кристалла образует группу симметрии GÎ (g1,g2,…gN) в смысле математической теории


29-04-2015, 02:12


Страницы: 1 2 3 4 5
Разделы сайта