Российская Военно-медицинская академия
Кафедра анестезиологии и реаниматологии
Современный подход к классификации режимов искусственной вентиляции легких
(Курсовая работа)
Санкт-Петербург
2008
ОГЛАВЛЕНИЕ
СПИСОК СОКРАЩЕНИЙ.. 4
Введение. 6
Глава 1. Исторические события в эволюции респираторной терапии. 9
1. 1. Применение оксигенотерапии. 9
1.2. Клиническое использование механической вентиляции. 11
Глава 2. Некоторые технические аспекты механической вентиляции и классификации аппаратов ИВЛ.. 21
2.1. Схема контроля (управления) 22
Глава 3. Режимы управления вентилятором.. 42
3.1. Режимы.. 44
Непрерывная Принудительная Вентиляция (ContinuousMandatoryVentilation) 44
Вспомогательная / Контролируемая Вентиляция (Assist / ControlVentilation) 46
Вспомогательная Искусственная Вентиляция (AssistedMechanicalVentilation) 47
Перемежающаяся Принудительная Вентиляция(IntermittentMandatoryVentilation) 48
3.6. Синхронизированная Перемежающаяся Принудительная Вентиляция (SynchronizedIntermittentMandatoryVentilation) 50
Вентиляция с поддержкой давлением (PressureSupportVentilation) 55
Постоянное Положительное Давление Дыхательных Путей 7 (ContinuousPositiveAirwayPressure) 58
Вентиляция со свободным (сбрасываемым) давлением дыхательных путей (AirwayPressureReleaseVentilation) 59
Принудительная Минутная Вентиляция (Mandatory Minute Ventilation) 63
комбинированные режимы.. 64
режимы двойного контроля искусственной вентиляции легких. 65
Двойной Контроль в пределах цикла дыхания. 65
Обеспечиваемая объемом поддержка давлением
(VolumeAssuredPressureSupport) 65
Вентиляция с Двойным Контролем от дыхания к дыханию.. 69
Поддержка объемом (VolumeSupport) 69
Вентиляция регулируемая давлением с контролем объема
(Pressure-Regulated Volume Support) 71
Автоматический режим (Automode) 73
Адаптивная поддержка вентиляции
(AdaptiveSupportVentilation) 74
Автоматическая компенсация трубки
(AutomaticTubeCompensation) 76
Пропорциональная вспомогательная вентиляция
(ProportionalAssistVentilation) 80
ЗАКЛЮЧЕНИЕ. 83
СПИСОК ЛИТЕРАТУРЫ.. 85
список сокращений
В современной медицинской литературе широко используются различные сокращения, которые применяются также для обозначения режимов искусственной вентиляции легких на респираторах зарубежного производства. Ниже приведены некоторые из этих аббревиатур, их расшифровка, а также общепринятые сокращения на русском и английском языках.
A / C - assist / control, вспомогательно - принудительный режим
ASV - adaptivesupportventilation, адаптивная поддержка вентиляции
ATC - automatictubecompensation, автоматическая компенсация трубки
BiPAP - bi-levelpositiveairwaypressure, вентиляция с двумя уровнями (фазами) положительного давления в дыхательных путях
CMV/ - continuousmandatoryventilation, непрерывная принудительная вентиляция
CPAP - continuouspositiveairwaypressure, постоянное положительное давление в дыхательных путях
IMV - intermittentmandatoryventilation, перемежающаяся принудительная вентиляция
IRV
- inverse-ratioventilation, вентиляция с инвертированным соотношением
вдох/выдох
MMV - mandatoryminuteventilation, принудительная вентиляция с заданным минутным объемом
PAV - proportionalassistventilation, пропорциональная вспомогательная вентиляция
PC (PCV) - pressure-controlledventilation, вентиляция с контролем по давлению
PC-IRV - PCinverse-ratioventilation, вентиляция с контролем по давлению и инвертированным соотношением вдох/выдох
PEEP (ПДКВ) - positiveendexpiratorypressure, положительное давление в конце выдоха
PRVC - pressureregulatedvolumecontrol; вентиляция с контролем объема и регуляцией давлением
PS (PSV, CSV) - pressuresupportventilation, вентиляция с поддержкой давлением
SIMV - synchronizedintermittentmandatoryventilation, синхронизированная перемежающаяся принудительная вентиляция
VAPS - volume-assuredpressuresupport, режим обеспечиваемой объемом поддержки давлением
VS - volumesupport, поддержка объемом
FiO2 - фракционная концентрация кислорода в дыхательной смеси
ДО - дыхательный объем
ИВЛ - искусственная вентиляция легких
Триггер - система обратной связи респиратора с пациентом, благодаря которой осуществляется возможность синхронизации аппаратных вдохов и обнаружения спонтанной дыхательной активности с последующей респираторной поддержкой
ФОЕ - функциональная остаточная емкость
Введение
Искусственная вентиляция легких является методом временного протезирования жизненно важной функции организма – внешнего дыхания. Несмотря на нежелательные побочные эффекты, ИВЛ незаменима при лечении тяжелобольных с острой дыхательной недостаточностью. Другого столь же эффективного способа устранения гипоксии и предупреждения развития в организме необратимых изменений современная медицина не знает.
Механическая вентиляция занимает значительное место в процессе выздоровления пациента от отделения интенсивной терапии до дома. В конце 1990-х в мире, по приблизительной оценке, 100.000 аппаратов ИВЛ находилось в использовании [MaclntyreN. R., BransonR. D., 2001]. Около половины из них - в Северной Америке. По тем же данным приблизительно 1.5. миллионам пациентов ежегодно в Соединенных Штатах проводится механическая вентиляция вне операционных блоков и послеоперационных палат, средняя продолжительность которой в госпиталях составляет 1-1,5 недели.
Две важные тенденции наметились в использовании вентиляции с положительным давлением в начале XXI столетия. Первая, это то, что количество интубированных пациентов и пациентов, нуждающихся в механической вентиляции, растет. Для этого имеется несколько причин. Одна из них – старение населения с большим количеством хронических заболеваний и частыми их обострениями. В дополнение, агрессивные хирургические манипуляции и процедуры выполняются пациентам старшего возраста и с более тяжелой патологией. Подобно этому более агрессивная химиотерапия проводится пациентам со злокачественными новообразованиями, результатом которой является большее количество имуноскомпрометированых больных с высоким риском септических осложнений и дыхательной недостаточности.
Вторая значимая тенденция в механической вентиляции, это то, что как только острая фаза дыхательной недостаточности разрешается, пациенты часто оказываются в хронической фазе зависимости от аппарата ИВЛ, результатом чего является повышение стоимости интенсивной терапии. Обе эти тенденции подразумевают, что потребность в ИВЛ только увеличится в течение обозримого будущего.
Расширение применения ИВЛ и поиск оптимальных конструкций аппаратов привели к их большому разнообразию. В конце 80-х – начале 90-х гг. в СССР выпускалось или готовилось к производству свыше 20 различных аппаратов, было известно также не менее 150 зарубежных конструкций [Бурлаков Р.И., Гальперин Ю.Ш., Юревич Ю.М., 1986]. Такое разнообразие затрудняет понимание принципиальных особенностей определенной модели, не позволяя эффективно использовать ее преимущества и нейтрализовать недостатки.
Актуальность работы обусловлена тем, что независимо от уровня экономического развития страны, лечебные учреждения различного ранга имеют на оснащении отделений интенсивной терапии аппараты ИВЛ зарубежного производства. И количество подобной аппаратуры непрерывно увеличивается. Современный аппарат ИВЛ представляет собой сложное устройство, требующее специальных знаний у врачей и обслуживающего персонала. Отсутствие таких знаний приводит к долгому «привыканию» к аппарату и неумелому его использованию, иногда ведущему к серьезным последствиям. Знание аппаратуры ИВЛ, грамотное и рациональное её использование являются отправной точкой успешного применения респираторной терапии. Но задача понимания механических вентиляторов становится все более трудной в течение последних нескольких лет. Это обусловлено тем, что производители пытаются достичь изделия отличающегося, создавая новые и различные названия для особенностей вентилятора, которые могут быть фундаментально одинаковыми. Однако, они могут использовать одинаковое слово для существенно различаемых особенностей. Существует ряд классификаций методов ИВЛ, которые по сути, не противоречат, но дополняют друг друга [Бурлаков Р.И. и др., 1986; Лескин Г.С., Кассиль В.Л., 1995; Гальперин Ю.Ш., Кассиль В.Л., 1996], поскольку почти ежегодно появляются новые режимы, предлагаемые различными фирмами. Для всех современных методов ИВЛ характерна общая черта – режим работы респиратора задается врачом и не зависит от пациента. В настоящее время разработано много режимов ИВЛ, основанных на разных принципах. Однако, общепринятой классификации их не существует [Кассиль В.Л., Лескин Г.С., Выжигина М.А., 1997].
Одним из рациональных вариантов решения данной проблемы может быть продвижение концепции определения ограниченного количества терминов, правил для их объединения и разъяснения терминологии. Невозможно заставить изготовителей принять последовательную схему классификации, но можно развивать ту, которая ясно объясняет, что делают вентиляторы, независимо от того, как производители называют это.
Целью данной работы является формулировка современного подхода к классификации режимов ИВЛ, определение и описание параметров, используемых для этого в настоящее время применительно к режимам ИВЛ.
Глава 1. Исторические события в эволюции респираторной терапии
Использование медицинского газа для лечения (первично, кислород) и механическая вентиляция, включающие перемежающееся положительное давление, создаваемое специальными устройствами, положили развитие многогранному направлению в медицине – респираторной терапии.
1. 1. Применение оксигенотерапии
В 1798 году ThomasBeddoes основал Институт пневматики в Бристоле (Англия), и начал опыты с кислородом, открытым Priestly. Там он начал использовать кислород для лечения заболеваний сердца, астмы и отравлений опиумом.Т. Beddoes можно отнести к отцам ингаляционной терапии. Он использовал кислород для решения задач, стоявших в то время перед медициной. Кислородная палатка была использована в 1910 г. Тем не менее, это произошло до того, как в 1920 г. были положены твердые физиологические основы лечения кислородом [LeighJ. M., 1974., HelmholzH. F., 1989., BarachA. L., 1962].
Научные исследования JohnScottHaldane и JosephBarcroft кислородной недостаточности у человека показали пользу кислородной терапии. Руководимый желанием дальнейшего изучения, J. Barcroft в 1920 г. провел 5 дней в камере, заполненной 15% кислородом. J. S. Haldane совершенствовал кислородную маску в 1918 г. во время первой мировой войны, когда применил лечение пациентов с отравлением хлором, вызывавшим отек легких.
Дальнейшее развитие кислородных устройств (лицевые маски, металлические/резиновые катетеры, кислородные камеры) выявило необходимость развития научно обоснованного назначения терапии кислородом.
Кислородные палатки начали использоваться в клиниках с 1920 г. LeonardHill использовал их для лечения трофических язв нижних конечностей. Использовались также большие кислородные палатки, в которых пациенты могли получать лечение. В этот же период J. S. Haldane предложил использовать кислород в смеси с обычным атмосферным воздухом. Он также начал использовать кислородные микстуры и разработал маску для дыхания с положительным давлением (СРРВ или СРАР), достигавшим 4 см Н2О.
В 1938 году WalterBoothby, W. RandolfLovelace и ArthurBulbulian в Майо-Клиник разработали маску, позволявшую достигать высоких концентраций кислорода с минимальным повторным его использованием. В дальнейшем это обеспечило кислородом пилотов, летавших на больших высотах во время второй мировой войны. Использование этих разработок для госпитальных целей стало возможным после войны [HelmholzH. F., 1989; BarachA. L., 1962].
В дальнейшем наука и технические нужды разделились, что требовало дополнительных инвестиций. Кроме того, использование кислорода вызывало необходимость подготовки специально обученного персонала, что также сопровождалось определенными трудностями. Врачи и медицинские сестры были не в состоянии поддерживать обслуживание 24 часа в сутки.
Но исследования в области использования кислорода не прекратились. В середине 60-х, Clark и JohnSeveringhaus представили электроды, позволившие произвести анализ РаО2 и РаСО2. Анализ газов крови был включен в исследования для отделений ингаляционной терапии, а также часто использовался в операционных и лабораториях, исследовавших функцию легких.
Во время 70-х и начале 80-х гг. электроды Clark и JohnSeveringhaus были адаптированы для чрескожного клинического применения. Пульсоксиметрия была открыта случайно TakuAoyagi, в попытках измерить сердечный выброс с помощью окрашенного индикатора. Начиная с 1974 г. это исследование было принято как стандарт для клинических измерений в операционных и отделениях интенсивной терапии [SeveringhausJ. W., HondaY., 1987].
Для титрования концентрации кислорода E. J. MoranCampbell разработал в 1960 г. маску, обеспечивавшую высокопоточную контролируемую подачу кислорода. Воздушно-кислородные смесители были разработаны в середине 1970-х с дозированием кислорода и потока для использования в отделениях интенсивной терапии. В течение 1970-х было показано снижение смертности у пациентов, нуждавшихся в дополнительном кислороде [NocturnalOxygenTherapyTrialGroup, 1980].
Преобразующие устройства, такие как резервуары (кислородные подушки), устройства импульсного потока и трахеальные катетеры были разработаны в 1980-х, в попытке сохранить стоимость продолжительной оксигенотерапии. Область респираторного ухода в настоящее время расширяется (сестринский уход на дому, самостоятельное обслуживание). В Соединенных Штатах в течение 1993 г. приблизительно 616.000 пациентов использовали кислород в домашних условиях [O’DonohueW. J.,PlummerA. L., 1994].
1.2. Клиническое использование механической вентиляции
Искусственная вентиляция легких была известна давно. Классическое описание этого метода есть в античной литературе [Гейронимус Т.В., 1975; HolyBible]. Заслуживает внимания тот факт, что в эволюции метода ИВЛ можно выделить несколько выдающихся открытий, внесших вклад в развитие этого метода. Однако десятилетия, разделяющие эти открытия, характеризовались только крайним невежеством, распространением неправильных представлений и ложных впечатлений. Одним из ранних таких открытий является факт, установленный Андреем Везалием в середине XVI века. Он показал, что животным можно поддерживать жизнь ритмическими раздуваниями легких с помощью нагнетания в них воздуха кузнечными мехами. В середине XVII века Robert Hook повторил опыты Везалия и получил те же результаты [FaulconerA., Jr., KeysT. E., 1965], но прошло 100 лет, прежде чем эта идея была внедрена в практику.
К 1770 г. применение кузнечных мехов завоевало популярность при оживлении утонувших людей. Однако избыточный энтузиазм в применении этого метода часто брал верх над осторожностью. Большое усердие в данном случае нередко приводило к разрыву альвеол, пневмотораксу и смерти пострадавших. В результате к 1800 г. этот вид ИВЛ получил весьма дурную репутацию. В течение последующих 70 лет прогресса в данной области не было.
Устройства для механической вентиляции, более используемые, чем кузнечные меха, начали появляться после середины 1800-х. Самые ранние из них, такие как спирофор Woillez’s, 1876 г. (рисунок 1-1), использовали помещение тела пациента в железный каркас с большой мембраной, создававшей субатмосферное давление.
Другие устройства напоминали подвижные кабинеты или телефонные будки. Схема отрицательного давления была рассмотрена с позиций физиологии, и попыток интубации трахеи не предпринималось до 1890-х гг. Хирургам нетерпелось использовать свои новые техники оперативных вмешательств на грудной клетке, но они осознавали проблему пневмоторакса. Имея такие периоперационные проблемы, началось рассмотрение вентиляции с положительным давлением. Для решения этой задачи требовались искусственные дыхательные пути. В 1900 г. стали доступны изгибаемые металлические трубки и в 1909 г. Meltzer произвел оральную интубацию.
Однако, в 1904 г., молодой германский хирург ErnеstSauerbrush, работая тогда над методикой анестезии в торакальной хирургии, изобрел камеру, позволявшую оперировать при отрицательном давлении (рисунок 1-2).
Эта идея в дальнейшем послужила основанием для разработки и применения кирасного (панцирного) респиратора. Однако метод различных (положительного – отрицательного) давлений был подхвачен и продолжил свою популярность в Европе. В противоположность этому, многие американские хирурги и анестезиологи вернулись к эндотрахеальной интубации и прямому введению воздуха в легкие. В 1913 г., в Питсбурге, ChevalierJackson разработал ларингоскоп и интратрахеальный катетер. Однако, вентиляция с положительным давлением через маску продолжалась, пока не уменьшилось мистическое отношение к технике интубации. Это произошло благодаря работе Ivan Magill с коллегами во время первой мировой войны [MörchE. T., 1990, ColiceG. L., 1994].
Много устройств, создающих положительное давление было разработано для хирургии и реанимации. Аппарат Fell, модифицированный O'Dwyer 1888 г. был скомбинирован из ларингеальной трубки (изогнутая металлическая трубка, проводимая через голосовую щель) и мехов, приводимых в движение ногой (рисунок 1-3).
В 1907 г., в Германии, Heinrich Dräger разработал свой Pulmotor, который в течение нескольких последующих десятилетий завоевал довольно большую популярность, особенно в практике работы пожарных и полиции. В 1910 г., американец Henry Janeway сконструировал анестезиологическое устройство.
Одна из первых эпидемий полиомиелита произошла в Нью-Йорке в 1916 г. К 1928 г. PhilipDrinker, CharlesMcKhann и LouisShaw в Гарварде разработали первые «железные легкие», которые получили широкое применение. В 1932 г. John H. Emerson разработал свои железные легкие, которые имели улучшенную конструкцию для пациента и прозрачный купол, обеспечивая вентиляцию с положительным давлением и при открытом корпусе (рисунок 1-4, а).
Около 1938 г. эпидемия полиомиелита коснулась и Англии, где обеспечение железными легкими не отвечало потребности. Эпидемическая вспышка в Скандинавии, Европе и Америке в 1950-х коснулась как взрослых, так и детей (рисунок 1-4, б). Эта катастрофически возросшая потребность в механической вентиляции, также как и возросшая необходимость в вентиляторах для анестезии, послужила своеобразным толчком прогрессу в развитии данной области на международном уровне.
Во время трагической эпидемии в Копенгагене в 1952 г., доктор Bjorn Ibsen изменил тактику и вместо железных легких использовал трахеостомию и вентиляцию положительным давлением. Из-за ограниченного количества аппаратов, около 1400 студентов-медиков проводили ручную вентиляцию. Мешок АМБУ (AMBU-bag, adultmanual
breathingunit) был разработан HenningRubenв 1954 г. Скандинавы изготовили устройства положительного давления, такие как AgaPulmospirator, Engstromи Mörch (рисунок 1-5). Прототип Mörch был сконструирован, используя цилиндр, сделанный из городской коллекторной трубы, во время оккупации Копенгагена Германией.
Британские анестезиологи произвели Beaver, Blease Pulmoflator и Barnet. В Германии, компания Drager разработала Poliomat. Этот международный опыт в использовании продленной вентиляции с положительным давлением привел к её использованию как в торакальной и сердечной хирургии, так и в послеоперационном периоде. Шведские хирурги Bjork и Engstrom работали в одном направлении с британскими врачами Macintosh и Mushin.
Несмотря на то, что европейцы отказались от железных легких, В Соединенных Штатах до середины 1950-х пациенты с полиомиелитом продолжали получать лечение в респираторах корпусного типа. Национальный Фонд младенческого паралича приложил огромные усилия в попытке ликвидировать полиомиелит. Была внедрена вакцина (Salk, позже Sabin) и выделены средства на развитие центров интенсивного ухода. После этого Соединенные Штаты последовали Скандинавии и Британии в послеоперационном использовании контролируемой вентиляции. В это время V. RayBennet (рисунок 1-6) внедрил TV-2P «assister» в 1948 г., а ForrestBird разработал свой «клинический магнитный респиратор» в 1951 г. (рисунок 1-7).
В середине 1950-х поршневой вентилятор E. Trier Mörch стал клинически доступным в Соединенных Штатах. Первое поколение вентиляторов с контролируемым давлением, таких как Bird Mark 7 и Bennett PR-1 было направлено в массовое производство в 1958 и 1961 гг. соответственно. JackEmersonвзял направление со своим объем/время-контролирующим аппаратом Post-Op или 3-PV в 1964 г. Доктор ThomasPetty с коллегами применили постоянное положительное давление дыхания (порог AlvanBarach’s) для использования в вентиляторах. Они назвали это положительным давлением в конце выдоха (РЕЕР) в 1967 г. и поддержали терапевтическое использование этого метода в лечении респираторного дистресс-синдрома взрослых.
Через 10 лет последовала вторая генерация вентиляторов объемного типа (Puritan-Bennet MA-1, Ohio 560, BournsBear 1, Siemens 900B). Эти вентиляторы стали «рабочими лошадками» в растущем количестве отделений интенсивной терапии в Соединенных Штатах. Параллельно, среди врачей интенсивной терапии возрастала потребность в квалифицированных специалистах в области управления вентиляторами.
Также развивались режимы дыхания и методы контроля функции вентилятора. Раннее оборудование управлялось пневматическими ил7и основными механическими переключателями. Управление функциями модернизировалось с появлением жидкокристаллических и транзисторных технологий в 1970-х. В настоящее время
8-09-2015, 23:04