Подобное состояние может появляться, если имеется острое уменьшение легочного комплайнса или увеличение сопротивления дыхательных путей (рисунок 3-18, дыхание C). Та же самая последовательность событий происходит, как описано для дыхания B. Однако, это дыхание демонстрирует возможность продления времени вдоха в течение VAPS. Имеются вторичные характеристики цикла для этих дыханий, и при длительности времени вдоха превышающем 3 секунды, цикл автоматически устанавливается по времени. Это предполагает, что когда режим используется для пациентов с обструкцией дыхательных путей, то мониторируется воздействие постоянного потока на соотношение вдох/выдох.
Наконец, и возможно наиболее важно, режим VAPS может позволять пациенту ДО больше, чем установленный объем. Поскольку предел давления остается одинаковым, это дыхание – такое же, как дыхание с поддержкой давлением (то есть, с ограниченным давлением и поток-цикличное). Рисунок 3-14, дыхание D демонстрирует эффект увеличения усилия пациента. Эта система учитывает нормальные изменения в ДО пациента и дополнительные (вздох) и увеличенные объемы во время гиперпноэ.
Таким образом VAPS, это режим, запускаемый пациентом или вентилятором, с ограничением давления или потока (в зависимости от отношений установленного и фактического ДО), и поток - или объем-цикличный.
Вентиляция с Двойным Контролем от дыхания к дыханию
Поддержка объемом (VolumeSupport)
Описательное определение. Двойной контроль от дыхания к дыханию в режиме поддержки давлением весьма прост – это закрытая петля вентиляции при поддержке давлением, с дыхательным объемом как входящей переменной.
Терминология производителей. Поддержка объемом (VS) (Siemens 300) и переменная поддержка давлением (Venturi) обычно используемые термины.
Другие термины. Никакие другие термины не используются.
Классификация. Двойной контроль от дыхания к дыханию во время режима поддержки давлением был введен на вентиляторе Siemens 300. Поддержка объема – это вентиляция поддержки давлением, которая использует ДО как обратную связь для непрерывной настройки уровня поддержки давлением. Все дыхания вызваны пациентом, с ограничением давления, и поток-цикличные. Поддержка объемом выбирается переключателем и устанавливается желаемый ДО. Вентилятор вводит поддержку объемом, доставляя тестовый вдох с пиковым давлением 5 см Н2О, когда имеется усилие пациента. Доставленный ДО измеряется и рассчитывается общий комплайнс системы. Следующие три дыхания доставляются с пиковым давлением вдоха в 75% от расчетного давления, чтобы доставить минимальный ДО. Каждое последующее дыхание использует предыдущее вычисление комплайнса системы, манипулируя пиковым давлением для достижения желаемого ДО. Это происходит от дыхания к дыханию, с максимальным изменением давления не более чем 3 см H2O и возможностью варьировать от уровня 0 см H2O выше РЕЕР до уровня на 5 см H2O ниже установленного давления тревоги. Поскольку все дыхания поддерживаются давлением, цикл обычно запускается от 5% начального пикового потока. Вторичный механизм запуска цикла дыхания активизируется, если время вдоха превышает 80% установленного общего времени цикла. Имеются также отношения между установленной частотой вентилятора и дыхательным объемом. Если желаемый ДО - 500 мл и частота дыханий установлена 15 в минуту, то минутный объем устанавливается – 7,5 л/мин. Если частота дыханий пациента ниже 15 дыханий в минуту, ДО автоматически увеличивается вентилятором до 150% начального значения (в этом примере, 750 мл). Это сделано для поддержания постоянного минутного объема. Рисунок 3-15 изображает ответ режима поддержки объемом на уменьшение комплайнса легкого. Если легочный комплайнс увеличивается, то происходит противоположный ответ (уменьшающий поддержку давлением и постоянный ДО).
Вентиляция регулируемая давлением с контролем объема
(Pressure-Regulated Volume Support)
Описательноеопределение. Двойной контроль с управляемым давлением, подобно поддержке объемом, является закрытой петлей, управляемой давлением, вызываемый пациентом или временем, с циклом по времени и дыхательным объемом как входящей переменной.
Терминология производителей. Регулируемый давлением контроль объема (PRVC) (Siemens 300), адаптируемая давлением вентиляция (Adaptive Pressure Ventilation, Hamilton Galileo), авто-поток (Auto-flow, Evita 4), и переменный контроль давления (VariablePressureControl, Venturi), обычно используемые названия.
Другие термины. Никакие другие термины не используются.
Классификация. Все эти технологии – это формы ограниченной давлением, цикличной по времени вентиляции, которые используют ДО как обратную связь для непрерывной подстройки предела давления. Как правило, эти режимы запускаются пациентом или механизмом, с ограничением по давлению и циклом по времени, с ДО как постоянной переменной, используемой для изменения предела давления. Несмотря на такой факт, что каждая техника имеет различное название, действие довольно последовательно между устройствами. Все дыхания в этих режимах вызываются временем или пациентом и ограничены давлением. Одно различие между устройствами - то, что Siemens 300 позволяет PRVC только в режиме CMV. Другие вентиляторы позволяют двойной контроль дыхания, используя режимы CMV или SIMV. Во время SIMV, принудительные дыхания – это дыхания с двойным контролем. Измерение объема для сигнала обратной связи также различается между вентиляторами. Siemens 300 использует исходящий объем через датчик потока вдоха. Hamilton Galileo использует датчик потока в дыхательном контуре и датчик потока вдоха для определения среднего объема. Эта последняя техника устраняет сжимаемый объем, может обнаружить наличие утечек и может быть предпочитаемым методом мониторинга объема в режиме двойного контроля.
PRVC выбирается в режиме переключения с установленным желаемым ДО. Подобно VS, доставляется тестовый вдох и рассчитывается общий комплайнс системы. Следующие три дыхания доставляются с давлением в 75% от необходимого для достижения желаемого ДО, основанного на вычислении комплайнса. Следующие дыхания увеличивают или уменьшают предел давления в пределах 3 см Н2О на одно дыхание в попытке доставить желаемый ДО. Предел давления колеблется от 0 см H2O выше уровня РЕЕР до 5 см H2O ниже установленного верхнего предела тревоги по давлению. Вентилятор подаст сигнал звуковой тревоги, если ДО и максимальный предел давления несовместимы.
Подобно VS, предложенное преимущество PRVC или другого режима двойного контроля дыхания поддерживает минимальное пиковое давление, которое обеспечивает установленный постоянный ДО и автоматическое «отлучение» от поддержки давлением при улучшении со стороны пациента. Аналогично, эти режимы поддерживают более последовательный ДО при снижении или повышении комплайнса.
Рис.3-16. Эффекты увеличения комплайнса при режиме двойного контроля от дыхания к дыханию (с контролем давления). Целевой дыхательный объем – 500 мл. При увеличении комплайнса, дыхательный объем также увеличивается. Давление снижается от 1 до 3 см Н2О постепенно от дыхания к дыханию до достижения целевого дыхательного объема.
Автоматический режим (Automode)
Описательное определение. Авторежим комбинирует двойной контроль дыхания с циклом по времени и двойной контроль дыхания с циклом по потоку. Авторежим позволяет вентилятору чередовать эти два режима, основываясь на полученных данных. В этом случае, усилие пациента или недостаток усилия определяют, являются ли дыхания цикличными по времени или потоку.
Терминология производителя. Авторежим - режим, доступный на Siemens 300A вентиляторе.
Другие термины. Никакие другие термины не используются.
Классификация. Авторежим комбинирует VS и PRVC в одном. Если пациент парализован, вентилятор обеспечивает PRVC. Все дыхания - принудительные с триггером по времени и ограничением по давлению. Предел давления увеличивается или уменьшается, поддерживая желаемый ДО, установленный клиницистом. Если пациент дышит спонтанно два последовательных дыхания, вентилятор переключается на VS. В этом случае, все дыхания являются вспомогательными, вызванными пациентом, ограниченными по давлению и поток-цикличными. Если у пациента возникает апноэ в течение 12 секунд (для взрослого), 8 секунд (в педиатрической практике), или 5 секунд (у новорожденных), вентилятор переключается снова в PRVC режим. Переход от PRVC к VS выполняется при эквивалентных пиковых давлениях. Этот режим - комбинация двух существующих режимов, использующих условную переменную усилия пациента, чтобы решить, является ли следующее дыхание цикличным по времени или поток-цикличным.
Авторежим также переключается между контролем и поддержкой давления или контролем и поддержкой объема. При переключении контроля объема на поддержку объемом, предел давления поддержки объемом эквивалентен давлению паузы во время контроля объема. Если плато вдоха определить невозможно, уровень давления рассчитывается: (пиковое давление - РЕЕР) х 50% + РЕЕР. Авторежим был введен недавно. Возможный недостаток в том, что во время переключения между параметрами цикличности, среднее давление дыхательных путей может уменьшиться. Это может привести к гипоксемии у пациента с острым повреждением легкого.
Адаптивная поддержка вентиляции
( AdaptiveSupportVentilation)
Описательное определение. Адаптивная поддержка вентиляции - режим, который комбинирует двойной контроль дыханий цикличных по времени и поток-цикличных, и позволяет вентилятору выбирать начальные установки, основанные на введенных клиницистом данных оптимального веса тела и минутного объема. Это наиболее сложный режим из техник закрытой петли, позволяющий вентилятору выбирать установленную частоту дыханий, ДО, предел давления при принудительных и спонтанных дыханиях, время вдоха во время принудительных дыханий, и I: E отношение, в отсутствие спонтанных дыханий.
Терминология производителя. Адаптивная поддержка вентиляции (ASV) используется на Hamilton Galileo.
Другие термины. Никакие другие термины не используются.
Классификация. ASV основан на концепции минимальной работы дыхания, развитой ArthurB. Otis [OtisA. B., FennW. O., RahnH., 1950]. Эта концепция предполагает, что пациент дышит дыхательным объемом и с частотой, которые минимизируют эластичность и сопротивление при поддержании насыщения кислородом и кислотно-щелочного баланса. A. B. Otis с коллегами разработали уравнение, которое описывает концепцию минимальной работы. ASV-алгоритм использует эту формулу наряду с весом пациента (который определяет мертвое пространство) чтобы регулировать переменные вентилятора. Клиницист вводит идеальный (оптимальный) вес тела пациента; устанавливает верхний предел тревоги высокого давления, РЕЕР и вдыхаемую концентрацию кислорода; и регулирует время нарастания потока и переменную цикла потока для поддержки дыханий давлением от 10% до 40% начального пикового потока. Это позволяет клиницисту обеспечивать полное вспомогательное дыхание или стимулировать спонтанное дыхание и облегчать отлучение от вентилятора.
Когда вентилятор связан с пациентом, он доставляет серию тестовых дыханий и измеряет комплайнс системы, сопротивление дыхательных путей и внутренний РЕЕР (PEEPi, autoРЕЕР). Эта система измерения важна для точного измерения переменных, используемых в уравнении минимальной работы. Ввод веса тела позволяет алгоритму вентилятора выбирать требуемый минутный объем. Вентилятор тогда использует введенные данные и данные измеренной механики дыхания, для выбора частоты дыхания, времени вдоха, соотношения вдох/выдох и предела давления для принудительных и спонтанных дыханий. Эти переменные измеряются от дыхания к дыханию и изменяются алгоритмом вентилятора для достижения желаемых целей. Если пациент дышит спонтанно, давление вентилятора поддерживает дыхания и стимулирует собственное дыхание. Однако, непосредственные и принудительные дыхания могут быть объединены, чтобы достичь необходимой минутной вентиляции. Предел давления как принудительных, так и спонтанных дыханий всегда регулируется. Это означает, что ASV непрерывно поддерживает двойной контроль от дыхания к дыханию для принудительных и непосредственных дыханий.
Вентилятор регулирует вдох/выдох (I: E) соотношение и время вдоха для принудительных дыханий, предотвращая образование PEEPi. Это делается вычислением временной константы выдоха (комплайнс х сопротивление) и поддержанием достаточного времени выдоха.
Если пациент парализован, вентилятор определяет частоту дыхания, ДО, предел давления, необходимый для доставки ДО, время вдоха и соотношение вдох/выдох. Как только пациент начинает дышать спонтанно, число принудительных дыханий уменьшается и вентилятор выбирает уровень поддержки давлением, необходимый для обеспечения ДО, достаточного чтобы гарантировать альвеолярную вентиляцию, основываясь на вычислении мертвого пространства (2,2 мл/кг).
Таким образом, ASV может обеспечивать ограниченную давлением вентиляцию с циклом по времени, добавляя двойной контроль «от дыхания к дыханию», с учетом принудительных и спонтанных дыханий (своего рода двойной контроль PC-SIMV + PS) и в конечном счете переключать аппарат на поддержку давлением с двойным контролем дыхания (переменное давление в каждом дыхании при поддержке давлением). В течение принудительного дыхания, вентилятор может устанавливать время вдоха и вдох/выдох соотношение [LaubscherT. P., etal., 1996; CampbellR. S., etal., 1998].
Автоматическая компенсация трубки
( AutomaticTubeCompensation)
Описательное определение. Автоматическая компенсация трубки - техника работы вентилятора, которая использует характеристики сопротивления искусственных воздухопроводящих путей, чтобы преодолеть приложенную работу дыхания, вызванную этими путями [BerstenA. D. etal., 1989; ShapiroM. etal, 1986].
Терминология производителя. Автоматическая компенсация трубки (ATC) (Drager Evita 4) – это общепринятый термин.
Другие термины. Никакие другие термины не используются.
Классификация. ATC - управляемая давлением, вызванная пациентом, поток-цикличная вентиляция. Доставленное давление – это результат известных характеристик сопротивления дыхательных путей и потребности потока пациенту. При уменьшении диаметра дыхательных путей, давление применяется для увеличения потока. При увеличении потребности в потоке, давление повышается для любого калибра дыхательных путей.
Согласно закону Пуазейля (Poiseuille), объемная скорость потока прямо зависит от четвертой степени радиуса (т.е., например, уменьшение радиуса трубки наполовину снижает скорость потока в 16 раз). Увеличение потока через интубационную трубку того же размера приводит к турбулентности, повышая сопротивление.
Может возникнуть вопрос: нельзя ли с целью компенсации повышенного сопротивления увеличить давление? Несколько исследователей защитили использование вентиляции с поддержкой давлением, чтобы преодолеть работу, создаваемую эндотрахеальной трубкой [BerstenA. D. etal., 1993; GuttmannJ. etal., 1993]. Этот метод требует увеличения уровней поддержки давлением, поскольку диаметр интубационной трубки уменьшается, и поток вдоха увеличивается. При статических условиях, поддержка давлением может эффективно устранять сопротивление интубационной трубки. Однако, переменный поток инспирации и изменяющиеся требования пациента не могут быть выполнены единственным (отдельным) уровнем поддержки давлением (рис.3-17). Во время периодов тахипноэ, предварительно выбранный уровень поддержки давлением не устраняет работу, создаваемую интубационной трубкой. К тому же, сопротивление интубационной трубки создает условие, при котором поток вентилятора является высоким, давление в трахее остается низким и проявляется неадекватность приложенной работы. Позже в дыхании, когда давление начинает уравновешиваться во время плато, поддержка давлением имеет тенденцию к избытку компенсации, продлевая вдох и усиливая перераздувание.
Рис.3-17.
Возможности поддержки давлением и автоматической компенсации трубки по преодолению работы дыхания, вызванной искусственными дыхательными путями. Поддержка давлением только устраняет работу, точно подавая поток. Выше и ниже этого потока поддержка давлением компенсирует недостаточно или чрезмерно. АТС компенсация может преодолевать сопротивление относительно требования пациента.
В 1993, J. Guttmann и партнеры описали технику для непрерывного вычисления давления в трахее у интубированного пациента, находящегося на ИВЛ [GuttmannJ., EberhardL., FabryB. etal., 1993]. Эта система использует компонент сопротивления интубационной трубки и измерение потока для вычисления трахеального давления. Эти авторы успешно утверждали свою систему в группе пациентов, находящихся на ИВЛ, находя благоприятные сравнения между расчетным и измеренным давлением в трахее.
Эта работа привела к введению режима ATC на Drager Evita 4. ATC пытается компенсировать сопротивление интубационной трубки посредством контроля закрытой петли относительно расчетного трахеального давления. Эта система использует коэффициенты сопротивления трубки (трахеостомической или эндотрахеальной) и измерение мгновенного потока, чтобы применить давление, пропорциональное сопротивлению, во время всего дыхательного цикла. Уравнение для вычисления трахеального давления:
Трахеальное давление (см Н2О) = проксимальное давление дыхательных путей (см Н2О) - коэффициент трубки (см Н2О /Л/с) х поток2 (л/мин)
Оператор вводит тип трубки (эндотрахеальная или трахеостомическая) и желаемый процент компенсации (10-100%). Наиболее интересно в режиме ATC - устранение приложенной работы дыхания во время вдоха. Однако, во время выдоха поток-зависимое давление уменьшается, проходя через трубку. ATC также компенсирует этот компонент и может уменьшать сопротивление выдоха и неумышленное переполнение. Во время выдоха, расчетное давление в трахее большее, чем давление дыхательных путей. В идеальных условиях, отрицательное давление в дыхательных путях может способствовать уменьшению сопротивления выдоха. Поскольку это не всегда желательно или возможно, ATC может уменьшать РЕЕР до 0 см Н2О в течение выдоха, чтобы облегчить компенсацию сопротивления выдоха, обусловленного эндотрахеальной трубкой [StockerR., FabryB., HaberthurC., 1997; GuttmanJ. etal., 1994; 1997].
Пропорциональная вспомогательная вентиляция
( ProportionalAssistVentilation)
Описательное определение. Пропорциональная вспомогательная вентиляция - режим искусственной вентиляции легких, основанной на уравнении движения [YounesM., etal., 1992; BigatelloL. M., etal., 1997]. Уравнение движения для системы органов дыхания:
PAW+ PMUS = объем х эластичность + поток х сопротивление,
где PAW - давление, созданное вентилятором, а PMUS - давление, созданное дыхательными мышцами. Чем больший объем и большая эластичность, тем большее давление требуется (или большее давление, создаваемое вентилятором, или большее дыхательное мышечное усилие пациента). Точно так же, как увеличивается сопротивление или поток, должно увеличиться давление, создаваемое вентилятором или дыхательной мускулатурой. Эта пропорциональность – отличительный признак PAV. Независимо от изменений усилий пациента, вентилятор продолжает выполнять одинаковый процент работы.
Режим PAV позволяет вентилятору изменять давление (контроль давления) чтобы всегда выполнять работу пропорционально усилию пациента. Поскольку левая сторона уравнения включает и давление вентилятора, и давление мускулатуры пациента, вентилятор может определять результат своей работы, основываясь на текущем измерении эластичности (обратная величина комплайнса) и сопротивления. Режим PAV требует установки только традиционных значений РЕЕР и FiO2. Другие устанавливаемые значения – процент вспомогательного объема (преодолевать эластичность) и процент вспомогательного потока (преодолевать сопротивление). PAV все еще остается достаточно новым режимом, и пока не известно, имеется ли какая-либо причина устанавливать вспомогательные настройки на любые другие значения, отличные от 80%.
Другие термины. Этот режим был назван проектировщиком MagdyYounes. До настоящего времени, никакие новые термины для PAV не были введены.
Терминология производителя. Еще 2 года назад только Drager ввели версию PAV. К настоящему времени Puritan Bennett. Оба производителя называют режим PAV.
Классификация. PAV использует измерение эластичности и
8-09-2015, 23:04