Роль карбоксипептидазы N и ангиотензинпревращающего фермента в гемостазе у онкологических больных в раннем послеоперационном периоде

Федеральное агентство по образованию

Пензенский государственный педагогический университетим. В. Г. Белинского

Дипломная работа

Роль карбоксипептидазы Nи ангиотензинпревращающего фермента

в гемостазе у онкологических больныхв раннем послеоперационном периоде

Студент Минькова Е. В подпись

Руководитель Сметанин В. А.

Пенза, 2008 г.

Содержание

Список сокращений

Введение

Глава 1. Обзор литературы

1.1 Система гемостаза

1.1.1 Механизмы свертывания крови

1.1.2 Противосвертывающие механизмы и система фибринолиза

1.1.3 Нарушения системы гемостаза у онкологических больных в раннем послеоперационном периоде

1.2 Пептидергическая система

1.2.1 Механизм образования активных форм пептидов

1.2.2 Вазоактивные пептиды и их роль в регуляции гемостаза

1.2.3 Ферменты обмена вазоактивных пептидов

1.2.4Изменения в пептидергической системе онкологических больных

Глава 2. Материалы и методы исследования

2.1 Материал исследования

2.2 Методы исследования

2.2.1 Метод определения активности карбоксипептидазы N

2.2.2 Метод определения активности ангиотензинпревращающего фермента

2.2.3 Метод определения содержания белка

2.3 Статистическая обработка результатов исследования

Глава 3. Результаты и обсуждение

3.1 Исследование активности карбоксипептидазы N в сыворотке крови онкологических больных в раннем послеоперационном периоде

3.2 Исследование активности ангиотензинпревращающего фермента в сыворотке крови онкологических больных в раннем послеоперационном периоде

Выводы

Список литературы


Список сокращений

АД – артериальное давление

АПФ – ангиотензинпревращающий фермент

АДФ – аденозин фосфат

АПТВ – активированное парциальное тромбопластиновое время

ВФ – фактор Виллебранда

КПN – карбоксипептидаза N

МФ – мономер фибрина

ПТИ – протромбин

РААС – ренин-ангиотензин-альдостероновая система

РФМК – растворимый фибрин-мономерный комплекс

ТПА – тканевой плазминогеновый фактор

ТФ – тканевой фактор

ХЗФ – Хагеман-зависимый фибринолиз

ЭПР – эндоплазматический ретикулум

Введение

Онкологические заболевания – тяжелейший недуг, борьба с которым – задача современного общества и вторая по значимости причина смертности во многих странах мира после сердечно-сосудистой патологии [2, 3].

Опухоль оказывает воздействие на все обменные процессы в организме, при этом происходит нарушение гемостаза, несовместимое с жизнью. Современные многоцентровые исследования показали, что риск ранних тромбоэмболических осложнений у онкологических больных в несколько раз выше по сравнению со здоровыми людьми того же возраста. Учащение эпизодов тромбирования возрастает с 6-10 до 35 % [8]. Основную роль в патогенезе различного рода тромботических осложнений, диссеминированного внутрисосудистого свертывания у онкологических больных играют изменения системы гемостаза [5], вызываемые как самой опухолью, так и различными методами лечения [19, 26, 27, 35, 37].

В последние годы существенно повысилась эффективность во всех трех направлениях лечения раковых заболеваний: хирургического, химиотерапевтического и радиологического. При этом хирургические вмешательства у больных со злокачественными новообразованиями часто осложняются массивными кровопотерями, что в первую очередь обусловлено травматичностью оперативных вмешательств из-за распространенности опухолевого процесса, при этом усугубляются нарушения гемостаза, патогенетические механизмы которых изучены недостаточно [9, 17, 24, 32, 47, 52, 65] .

В функционировании системы гемостаза немаловажная роль принадлежит вазоактивным пептидам, в обмене которых принимают участие ангиотензинпревращающий фермент и карбоксипептидаза N [48].

Целью настоящей работы было изучение роли карбоксипептидазы N и ангиотензинпревращающего фермента в гемостазе у онкологических больных в раннем послеоперационном периоде.

При выполнении работы были поставлены следующие задачи:

1.Изучить активность карбоксипептидазы N и ангиотензинпревращающего фермента у больных раком легких.

2. Изучить активность карбоксипептидазы N и ангиотензинпревращающего фермента у больных раком брюшной полости.

3. Изучить активность карбоксипептидазы N и ангиотензинпревращающего фермента у больных раком мочеполовой системы.

4. Исследовать корреляционные взаимосвязи между активностью изучаемых ферментов и показателями гемостаза.

Научная новизна и практическая ценность работы. Изучена активность карбоксипептидазы N и ангиотензинпревращающего фермента в сыворотке крови у онкологических больных в раннем послеоперационном периоде. Установлены корреляционные взаимосвязи между активностью исследуемых ферментов и показателями гемостаза.

Полученные результаты представляют интерес для понимания роли карбоксипептидазы N и ангиотензинпревращающего фермента в регуляции гемостаза при онкологических заболеваниях с различной локализацией опухоли и могут быть использованы для разработки методов профилактики и коррекции нарушений гемостаза в послеоперационном периоде.

Апробация работы. Материалы данной работы представлены на 57 научной конференции студентов ПГПУ, направлена статья в журнал «Известия Пензенского государственного университета им. В. Г. Белинского» (2008 г.).


Глава 1. Обзор литературы

1.1 Система гемостаза

Система гемостаза является одной из защитных систем организма. Она обеспечивает с одной стороны сохранение крови в кровеносном русле в жидком агрегатном состоянии, а с другой стороны остановку кровотечения и предотвращает кровопотери при повреждении кровеносных сосудов. Основными компонентами системы гемостаза являются сосудистая стенка (особенно её эндотелий и субэндотелий), клетки крови, а также плазменные и клеточные ферментные системы: фибринолитическая, антикоагулянтная, калликреин-кининовая [36].

1.1.1 Механизмы свертывания крови

Сосудисто – тромбоцитарный (первичный) гемостаз

Стенка капилляра образована эндотелием, базальной мембраной и адвентицией.

Базальная мембрана капилляра состоит из аморфного вещества, представленного в основном гиалуроновой кислотой и коллагеновыми волокнами.

В синтезе гиалуроновой кислоты принимают активное участие катехоламины (адреналин, норадреналин), витамины С, Р, ионы Са2+ , глюкокортикоиды. При достаточном количестве этих веществ создается структурно и функционально полноценная сосудистая стенка. Функциональная полноценность сосудистой стенки и эндотелия проявляется прежде всего в скорости их сокращения в ответ на травму и способности противостоять механическому воздействию. Это – первая и самая быстрая первичная реакция гемостатической системы [25].

В капиллярах и других сосудах микроциркуляторного русла сосудистый спазм, значительно снижающий объем кровопотери, длится 2-3 минуты, затем наступает дилатация поврежденного сосуда. Вследствие этого должно было бы возобновиться кровотечение. В норме этого не случается, так как сосудистый компонент гемостаза подкрепляется тромбоцитарным.

Уже в первые секунды после травмы происходит адгезия (прилипание) тромбоцитов к краям поврежденного эндотелия и коллагеновым волоконцам. Под влиянием АДФ, которая выделяется из поврежденного сосуда и при гемолизе эритроцитов, тромбоциты склеиваются друг с другом (наступает их агрегация) как у места поврежденного сосуда, так и в кровотоке. В результате адгезии и начальной агрегации тромбоцитов из них выделяются серотонин, адреналин и АДФ (собственная АДФ тромбоцитов). Это – реакция освобождения первого порядка. АДФ способствует агрегации пластинок, а серотонин и адреналин усиливают сокращение поврежденной сосудистой стенки [28].

Адреналин и АДФ, а также находящиеся в плазме Са2+ , Mg2+ , фибриноген и другие плазменные факторы усиливают агрегацию тромбоцитов. Однако эта реакция обратима у большинства пластинчатых агрегатов. Прилипая друг к другу и к адгезированным тромбоцитам, они все же могут отрываться и уноситься в кровоток. Таким путем идет дезагрегация, скорость которой также во многом определяет наклонность к кровоточивости или тромбообразованию.

Наряду с процессами адгезии и агрегации тромбоцитов из поврежденных тканей и эндотелия выделяется тканевый тромбопластин (IП фактор свертывания). При его взаимодействии с VП, IV, Х и V факторами, а затем и с протромбином (фактором П) образуется тромбин. Следов тромбина недостаточно для свертывания крови, но благодаря ему начинаются важные реакции первичного гемостаза: тромбин действует на агрегаты тромбоцитов, переводит обратимую агрегацию тромбоцитов в необратимую; необратимая агрегация сопровождается реакцией освобождения второго порядка, вследствие которой возникают гидролазы, АДФ в высокой концентрации и вазоактивные вещества (серотонин, адреналин, норадреналин) [20]. Благодаря воздействию этих веществ формируется белый тромбоцитарный, или первичный, тромб. Из-за недостатка VП, V, Х факторов и протромбина будет нарушаться первичный гемостаз. После образования первичного тромба полностью блокируется кровотечение из сосудов микроциркуляции.

Таким образом, гемостаз в сосудах микроциркуляции осуществляется в основном клеточными (эндотелием, тромбоцитами) и сосудистым факторами [25]. Свертывающая система крови не успевает включиться в полном объеме, а следы тромбина, обеспечивающего необратимую агрегацию, появляются вследствие быстрой активации тканевого тромбопластина (тканевый, или внешний, путь образования протромбиназы).

Поэтому первичный гемостаз будет нарушен при: изменениях сосудистой стенки (дистрофические, иммуноаллергические, неопластические и травматические капилляропатии); тромбоцитопении; тромбоцитопатии; сочетании этих факторов.

Сформировавшийся белый тромбоцитарный тромб, который подвергся вязкому метаморфозу и ретракции, надежно стягивает края поврежденного микрососуда, противостоит его дилатации и не пропускает жидкую часть крови.

В сосудах более крупного калибра, чем капилляры (венулах и артериолах), несмотря на их более длительный спазм (до двух часов), образовавшийся тромбоцитарный тромб не в силах противостоять расхождению краев поврежденного сосуда при его дилатации – белый тромб разрывается. Если этого не происходит, то даже неразрушенный пластиночный тромб в сосудах с повышенным кровяным давлением ненадежен, так как пропускает, словно сито, плазму и форменные элементы. И кровотечение хотя и медленно, но будет продолжаться. Поэтому для окончательного надежного гемостаза в поврежденных крупных венах и артериях первичного тромба недостаточно. У здоровых людей в таких случаях на первичном (белом) тромбоцитарном тромбе образуется красный [33].

Оперативное вмешательство выступает как мощный прокоагулянтный фактор и вызывает дальнейшее нарушение системы гемостаза. В патогенезе послеоперационных осложнений происходит ухудшение кровообращения в системе микроциркуляции и в магистральных сосудах [35].

Коагуляционный гемостаз

Процесс свертывания крови – многоступенчатая ферментная реакция, в которой принимает участие ряд белков, обозначаемых как факторы свертывания крови (табл. 1).

Одни из этих белков являются протеазами (факторы II, VII, IX, Х, ХI, XII, XIII), другие - акцелераторами (ускорителями) ферментных реакций (факторы V и VIII), третьи - конечным субстратом процесса (фактор I, или фибриноген). Взаимодействие факторов свертывания крови, их активация, а затем и инактивация почти на всем протяжении процесса происходят на плазменных фосфолипидных мембранах, от количества которых в плазме зависит либо ускорение, либо существенное замедление процесса свертывания.

Синтез ряда наиболее важных факторов свертывания (факторов V, VII, X, IX и II), а также двух основных физиологических антикоагулянов - протеинов С и S - осуществляется паренхиматозными клетками печени - гепатоцитами, причем для того, чтобы они могли участвовать в процессе свертывания крови, все эти факторы, кроме фактора V, должны подвергнуться γ-карбоксилированию витамин-К-зависимой карбоксилазой.

Таблица 1Международная номенклатура факторов свертывания крови

Факторы Синонимы Содержание в плазме, г/л Полупериод распада (в часах)
I Фибриноген 1,8-4,0 72-120
II Протромбин около 0,1 48-96
III Тканевый тромбопластин 0 -
IV Ионы кальция 0,09-0,10 -
V Проакселерин Около 0,01 15-18
VII Проконвертин Около 0,005 4-6
VIII Антигемофильный фактор А 0,01-0,02 7-8
IX Кристмас-фактор Около 0,003 15-30
X Фактор Стюарт-Проуэра Около 0,01 30-70
XI Антигемофильный фактор С Около 0,005 30-70
XII Фактор Хагемана Около 0,03 50-70
XIII Фибриназа 0,01-0,02 72
Дополнительные
Фактор Виллебранда фВ 18-30
Фактор Флетчера Прекалликреин -
Фактор Фитцжеральда Кининоген -

Поэтому при дефиците витамина К и нарушении его всасывания из кишечника (при кишечном дисбактериозе, обтурации общего желчного протока), а также под влиянием непрямых антикоагулянтов (кумаринов, фенилина), являющихся функциональными антагонистами витамина К, нарушается синтез всех витамин К-зависимых факторов свертывания, а также протеинов С и S, вследствие чего может возникнуть тяжелая кровоточивость, сочетающаяся в некоторых случаях с микротромбированием сосудов и некрозами тканей из-за недостатка антикоагулянта – протеина С.

Такое же нарушение свертываемости крови наблюдается и при тяжелых заболеваниях печени, но при этом снижается уровень в крови не только всех витамин К-зависимых факторов свертывания, но и фактора V, а также альбумина [28].

Различают три этапа процесса свертывания крови.

Первый этап завершается активацией фактора X в так называемом протромбиназном комплексе, в состав которого входят, наряду с фактором X, фактор V, ионы кальция и фосфолипидные матрицы. Активация факторов в этом комплексе может осуществляться двумя путями: внешним и внутренним. Запуск внешнего реализуется поступлением из тканей в кровь тканевого тромбопластина (или тканевого фактора - ТФ). Свертывание по этому механизму, который в пробирке имитируется добавлением к плазме тканевого тромбопластина, обозначается как протромбиновый (тромбопластиновый) тест. Коагуляция в нем происходит очень быстро, в течение 12-15 с.

Другим механизмом запуска процесса свертывания крови является внутренний путь. Он связан с контактом крови с субэндотелием (коллагеном), а также с разрушенными эритроцитами (при внутрисосудистом гемолизе), а в пробирке – контактом со стеклом. При этом механизме последовательно активируются в комплексах «фактор XII (фактор Хагемана) + прекалликреин + фактор XI», а затем «фактор XI + фактор IX + фактор VIII», после чего процесс, как и в предыдущем механизме, замыкается на активации фактора X с образованием протромбиназного комплекса. Внутренний механизм первого этапа свертывания протекает намного медленнее, чем внешний [42]. Он определяется общим временем свертывания крови, временем рекальцификации цитратной плазмы и активированным парциальным тромбопластиновым временем (АПТВ).

В отличие от пробирочных опытов в организме оба указанных выше механизма свертывания крови не строго изолированы друг от друга, авзаимодействуют между собой.

Второй этапсвертывания крови заключается в активации протромбиназным комплексом (т. е. фактором Ха в комплексе с факторомVa + Ca2+ + фосфолипидная матрица) протромбина, который, расщепляясь, превращается в активный тромбин (фактор IIa). Таким образом, второй этап процесса свертывания завершается образованием активного тромбина.

На третьем этапепроцесса этот активный тромбин отщепляет от α- и β -цепей фибриногена два пептида А и два пептида В, в результате чего в плазме крови повышается содержание этих пептидов и одновременно – мономеров фибрина (МФ) с четырьмя свободными связями. Вслед за этим начинается процесс полимеризации МФ – образование их димеров, затем тетрамеров и, в конечном счете – волокон и сгустков фибрина [50].


1.1.2 Противосвертывающие механизмы и система фибринолиза

В свертывающей системе крови действуют силы как аутокатализа, или самоускорения, так и самоторможения, в силу чего многие факторы свертывания крови и их фрагменты приобретают свойства антикоагулянтов. В частности, сам фибрин и продукты расщепления фибриногена плазмином обладают противосвертывающим действием. Однако наиболее важны для поддержания крови в жидком состоянии так называемые первичные, т. е. самостоятельно синтезируемые и постоянно находящиеся в крови, антикоагулянты (табл. 2). Помимо перечисленных в табл. 2 важнейших физиологических антикоагулянтов, в патологических условиях в крови могут появляться в высоком титре иммунные ингибиторы факторов свертывания крови - антитела к факторам VIII, IX и другим, а также к фосфолипидным матрицам, на которых взаимодействуют и активируются факторы свертывания крови (антифоcфолипидный синдром) [42].

Таблица 2 Основные первичные антикоагулянты

Наименование Механизмы действия
Ингибитор внешнего пути свертывания крови (TFPI) Синтезируемый в эндотелии белок, инактивирующий комплекс «ТФ+фактор Vila+фактор Ха»
Тромбомодулин Гликопротеин мембраны эндотелиальной клетки, связывающий и инактивирующий тромбин, в комплексе с которым тромбин сохраняет способность активировать протеин С
«Контактные ингибиторы» (фосфолипидный, плацентарный) Подавляют пусковой механизм внутреннего пути свертывания крови (комплекс факторов XIIa-XIa и калликреина)
Антитромбин III (ATIII) Прогрессивно действующий ингибитор тромбина, фактора Ха и в меньшей степени других протеаз, участвующих в свертывании крови
Гепарин и другие кислые мукополисахариды В комплексе с ATIII действуют как мощные антикоагулянты
Протеин С Синтезируемый гепатоцитами витамин К-зависимый ингибитор факторов Villa и Va, эндогенный активатор плазминогена. Активируется тромбином и комплексом «тромбин+тромбомодулин»

Фибринолитическая (плазминовая) система, как и система свертывания крови, активируется как по внешнему, так и по внутреннему механизму.

Наиболее мощным внешним активатором этой системы является продуцируемый в эндотелии, а также в ряде тканей тканевый плазминогеновый активатор (ТПА), на долю которого приходится около 70% всего активаторного эффекта. Еще около 15% внешнего механизма активации приходится на фермент урокиназу, который вырабатывается в почках и в наибольшей своей части выделяется с мочой, а в кровь попадает в значительно меньшем количестве. На остальные активаторы, поступающие в кровь извне, приходится лишь небольшая часть указанной активности, но в патологических условиях она может быть резко усилена тканевыми и лейкоцитарными протеазами и другими факторами.

Внутренний механизм активациифибринолиза осуществляется в основном комплексом «фактор XIIа+калликреин+высокомолекулярный кининоген» (так называемый XIIа - калликреин зависимый фибринолиз), активированными протеинами C+S.

Механизмы активации фибринолиза замыкаются на плазминогене, который трансформируется в активный фермент – плазмин (в прошлом он обозначался как фибринолизин) [25].

Плазминоген и его активаторы фиксируются в основном на сгустках фибрина в тромбах, в связи с чем лизис фибрина преобладает над лизисом растворенного в плазме фибриногена. Кроме того, действию плазмина на фибриноген препятствует содержащийся в плазме мощный ингибитор этого фермента – а2 -антиплазмин. Однако при чрезвычайно сильной активации плазминогена происходит истощение а2 -антиплазмина, и в плазме крови обнаруживается большое количество продуктов как фибринолиза, так и фибриногенолиза. Эти продукты не идентичны друг другу. В результате расщепления фибриногена в плазме нарастает количество конечного продукта этого процесса - фрагмента D, тогда как при расщеплении фибрина увеличивается концентрация фрагментов D-D (димера) и D-E-D. Нарастание содержания в крови D-димера является важным маркером массивного тромбоза кровеносных сосудов, тромбоэмболии, диссеминированного внутрисосудистого свертывания крови [20, 25, 45].

1.1.3 Нарушения системы гемостаза у онкологических больных в раннем послеоперационном периоде

У онкологических больных система гемостаза реализуется преимущественно по внешнему механизму процесса свертывания крови, т.е. путем воздействия тканевого тромбопластина и так называемых раковых прокоагулянтов на факторы VII и Х. Многие виды опухолевых клеток продуцируют и выделяют в кровь большое количество ТФ, а также особых “раковых прокоагулянтов”, обладающих способностью активировать как фактор VII, так и фактор Х [8].

После операции значительно повышена интенсивность агрегации тромбоцитов. Эти изменения можно объяснить появлением тромбина и АДФ в результате прокоагулянтной активности опухолевых клеток и взаимодействием сиалопротеина мембран опухолевых клеток с тромбоцитами [8, 19, 26, 35].

В первую фазу свертывания крови и активации коагуляционного каскада возрастает скорость образования тромбопластина и тромбина, быстрее достигается максимальная активность этих факторов свертывания; во вторую фазу повышается активность факторов протромбиназного комплекса (II, VII, IX, X). Эти изменения индуцированы поступлением в кровоток высокоактивных прокоагулянтных субстанций из опухолевой ткани, наиболее важной из которых является серинопротеаза, которая независимо от тканевого фактора и фактора VIIа ведет к образованию фактора Ха. Отмечается увеличение концентрации фибриногена, что может быть связано с повышенным расходом фибрина на построение стромы опухоли и потреблением его в процессе внутрисосудистого свертывания крови [35].

Увеличивается количество РФМК, свидетельствуя о наличие в плазме комплексов фибрин-мономеров с продуктами деградации фибриногена. Таким образом оперативное вмешательство у онкологических больных вызывает развитие подострого ДВС-синдрома. При этом повышается агрегация тромбоцитов, потребление фибриногена и антитромбина III, увеличивается концентрация РФМК [43].

Гемокоагулирующие свойства легких

Легочная паренхима человека и животных богата тромбопластином. Т. Аструп и Пермин первыми обнаружили в легких большое количество активаторов фибринолиза. Легочная ткань содержит плазмин, плазминоген, активаторы и проактиваторы плазминогена, а также антиплазмин [44].

Гемокоагулирующие и фибринолитические агенты легких не только участвуют в локальном гемостазе, но и выделяются в кровь. В кровь поступают тромбопластин, естественные антикоагулянты, активаторы


8-09-2015, 23:30


Страницы: 1 2 3 4
Разделы сайта