Противовирусный иммунитет молекулярно-клеточные механизмы, закономерности развития и иммунопато

Противовирусный иммунитет: молекулярно-клеточные механизмы, закономерности развития и иммунопатологи

06.09.2009

Л.П.Титов, И.А.Карпов

Вирусы характеризуются необычайным генетическим разнообразием и изменчивостью. Их геном кодирует от нескольких до десятков простых и сложных белков, обладающих иммуногенностью (4, 7, 39). В противостоянии атаке вирусов и контроле вирусной инфекции в организме отдельного индивидуума и популяции человека комплексно задействуется весь арсенал неспецифических факторов резистентности и адаптивного иммунитета. На молекулярно-клеточном уровне множественные взаимодействия вирусов в системе паразит-хозяин вызывают разнообразные и многоуровневые ответы со стороны клеточных и гуморальных механизмов (4,6,50). В процессе репликации генома и репродукции вирусов в клетках и органах хозяина, они в определенном порядке экспрессируют специфичный для каждого вида спектр (профиль) регуляторных (неструктурных) и структурных белков, которые в свою очередь анализируются и распознаются иммунной системой как чужеродные. Наименьшая часть молекул антигенов вирусов, обладающая иммунологической специфичностью и индуцирующая иммунный ответ, называется эпитопом или антигенной детерминантой (АД). Различают конформационные, линейные, В-и Т-клеточные эпитопы. Термином «сайт» обозначают конкретный участок определенного полипептида (антигена), с которым взаимодействуют специфичные ему антитела и/или рецепторы Т-лимфоцитов. Определенные эпитопы поверхностных и внутренних белков вирусов индуцируют образование вирусспецифических антител, а также стимулируют образование клонов эффекторных (цитотоксических Т-лимфоцитов-ЦТЛ и эффекторов гиперчувствительности замедленного типа-ГЗТ) и регуляторных Т-CD4+CD25+ T-лимфоцитов (4, 8). Это обеспечивает формирование противовирусного иммунитета, адекватного активности инфекционного процесса и способного достигнуть стерилизующего эффекта в отношении вызвавшего его инфекционного агента. Другие антигены вирусов не способны индуцировать протективный иммунитет, однако их обнаружение и количественная оценка в биологических жидкостях больного может быть полезно для диагностики и оценки тяжести заболевания.

Факторы неспецифической защиты. Кожа (эпидермис, жирные и молочная кислоты, рН) и слизистые (эпителий, ингибиторные компоненты слизи, рН), являются важными барьерами на пути проникновения вирусов в организм. Попадание в организм вирусных частиц не равнозначно инфицированию. Для возникновения и развития вирусной инфекции необходимо ряд условий. Во-первых-инфекционность поступивших вирусных частиц, т.е. способность внедряться в клетки и репродуцироваться. Известно, что под влиянием условий окружающей среды она довольно быстро утрачивается. Во-вторых – чувствительность клеток индивидуума к инфекции в целом и конкретному инфекционному агенту в частности. В-третьих – это количество жизнестойких инфекционных вирионов, внедрившихся в организм. Степень чувствительности людей к вирусам в популяции варьирует. В первую очередь она зависит от наличия и уровня экспрессии клетками входных ворот рецепторов, комплементарных поверхностным белкам и нуклеиновым кислотам вирионов (2, 8). Проникновение и интенсивность инфицирования локальной популяции эпителиальных клеток вирусом лимитируется именно этим фактором. Если инфицирование (прикрепление и проникновение вируса в клетку) состоялось, то в ответ на его внедрение в организме происходят множественные и многоэтапные изменения с участием молекул, клеток и органов, регуляторных и эффекторных систем. Основной их целью является эффективная организация отражения возникшей для организма угрозы. На ранних этапах инфекции они носят неспецифический характер. К факторам иммунологической неспецифической противовирусной защиты относятся гуморальные (интерфероны, интерлейкины, хемокины, система комплемента, естественные антитела) и клеточные (toll-like рецепторы, рецепторы цитокинов, естественные киллеры – NK-клетки, моноциты и макрофаги, дендритные клетки-ДК) факторы (22).

Интерфероны. Система интерферонов, вероятно, является главным неспецифическим гуморальным фактором противовирусной защиты. Это группа низкомолекулярных белков, синтезируемых клетками-мишенями при взаимодействии с ними вирусных частиц (вирионов) или их компонентов (нуклеиновых кислот, белков). Имеется три главных типа интерферонов – альфа-, бета-и гамма (2,5,19) (табл. 1).

Таблица 1

Характеристика основных типов интерферонов человека

Биосинтез интерферонов начинается со связывания вирионов с мембранными рецепторами клеток. Возникающий при этом мембранный сигнал, адресуется в ядро клетки и запускает транскрипцию генов соответствующих интерферонов. В результате синтезируются мРНК, затем на рибосомах происходит трансляция полипептидных цепей интерферонов. Они не обладают прямым противовирусным эффектом, синтезируются, секретируются и проявляют биологический эффект преимущественно локально или переносятся с кровью или лимфой на расстояние, воздействуют на многие типы клеток с разными функциями. Этим и объясняются множественные биологические эффекты, вызываемые ими. Основным биологическим эффектом цитокинов является ингибиция репродукции вирусов и некоторых иных патогенов, а также пролиферации опухолевых клеток. Второй стороной их биологической активности является иммуномодулирующая. Они модифицируют функцию многих типов клеток иммунной системы – макрофагов, естественных киллеров, Т-и В-лимфоцитов, повышают экспрессию молекул ГКГ I и II классов, усиливают продукцию других цитокинов и антител (2, 27, 47).

Интерферон-альфа синтезируется лейкоцитами на ранних этапах инфекции и поэтому относится к первой линии защиты организма. Его биосинтез повышается при бактериальных и паразитарных инфекциях. Другие цитокины – ИЛ-1 и ИЛ-2, ФНО и ростовые факторы оказывают стимулирующий эффект на синтез альфа интерферона. Интерферон бета синтезируется фибробластами, также в ответ на инфекцию и иные стимулы. К интерферонам 1-го типа также относятся интерфероны дельта (Инф-д), омега (Инф-о) и тау-интерферон (Ифн-т). Интерферон-альфа выявлен в трофобластах и участвует в механизмах естественной защиты эмбриона при имплантации в матку. В настоящее время известны варианты Ифн-альфа – А1-А8, А10, А13, А14, А16, А17, А21 и А22. Наиболее изучен из них Ифн-а2, преимущественно продуцируемый макрофагами. Высокий уровень экспрессии его генов выявлен в клетках лимфоидных органах и головного мозга. Препараты Инф-а2 обладают противовирусной, антипролиферативной, противораковой и иммуномодулирующей активностью. Транскрипция генов, кодирующих альфа-интерфероны, ассоциируется с механизмами фосфорилирования, димеризации, транслокации в клеточное ядро и связывания с промотором фактора регуляции ИФН – IRF (36). В зависимости от времени начала биосинтеза интерферонов после воздействия индукторов выделяют «ранние» и «поздние» гены Ифн-а. Недавно выявлен новый вариант альфа-интерферона-к-Ифн, который продуцируется кератиноцитами кожи (5, 22, 43).

Интерферон гамма или «иммунный интерферон» относится к специфическим факторам защиты. Он является продуктом и участником антиген-специфического иммунного ответа, так как синтезируется ограниченным спектром клеток, преимущественно вирусспецифическими клонами Т-лимфоцитов, а также NК/NK-T клетками после их активации. Активация последних индуцируется ИЛ-12, продуцируемым активированными макрофагами и ДК в ходе иммунного ответа. Биоситез его повышается под влиянием ИЛ-2 и эстрогенов (2, 22, 48).

В последнее время выявлен новый класс регуляторных интерфероноподобных белков-лимитинов. Они на 30% гомологичны интерферонам, способны связываться с рецепторами интерферонов, также подавляют пролиферацию Т-клеток, стимулируют активность NK-клеток, индуцируют экспрессию IRF-1 и протеинкиназ семейств JAK1 и Tyk2 (3, 14).

Рецепторы интерферонов. На мембране клеток имеется два типа рецепторов для интерферонов. Большинство из них являются гетеродимерами и состоят из трех фрагментов (доменов) – внеклеточного (лиганда), трансмембранного и внутриклеточного (сигнального) доменов. Характерным свойством их является рецепция только видоспецифических молекул интерферонов (18, 28). При связывании молекул интерферонов с внеклеточным распознающим доменом рецептора формируется активационный мембранный сигнал, передающийся посредством трансмембранной части к внутриклеточному (сигнальному) домену. Этот домен функционирует в ассоциации с группой внутриклеточных сигнальных молекул, таких как JAK – STAT( белков трансдукторов сигналов и транскрипции) действующих в каскадной манере и обеспечивающих проведение и усиление сигнала с мембраны в ядро клетки. В основе формирования сигнала лежит активация этим доменом цитозольных тирозиновых киназ семейства JAK, которые затем фосфорилируют STAT белки. Комплекс фосфорилированных STAT белков мигрирует в ядро и селективно усиливает транскрипцию группы генов, контролирующих биосинтез от 50 до 100 полипептидов с разными функциями. Время, необходимое для формирования на мембране и проведения в ядро внутриклеточного сигнала, составляет не более 1-й минуты. Большинство из продуцируемых белков интерферируют с процессами репликации вирусов в клетке. Различные вирусы ингибируются под влиянием интерферонов разными путями: а) на уровне репликации и транскрипции генома; б) стабилизации мРНК; в) трансляции вирусспецифических белков. Непрямыми эффектами биологического действия интерферонов является стимуляция экспрессии соматическими и иммунокомпетентными клетками молекул главного комплекса гистосовместимости (МНС I и II классов) (1, 48, 68).

Толл (toll-like) рецепторы – семейство молекул, состоящее из 11 трансмембранных одноцепочечных белков-рецепторов со сходным строением (31). Имеют внеклеточную (19-25 тандемно-повторяющихся участков с повышенным содержанием лейцина), трансмембранную и внутриклеточную (гомологичную внутриклеточному домену ИЛ-1) (14,22) части. Фрагменты этих рецепторов напрямую взаимодействует с ПАМП микроорганизмов, образуя активационные комплексы. Проведение активационного сигнала, индуцированного этими рецепторами, происходит с участием нескольких вспомогательных молекул-СD11/CD18, CD14, MD2, ЛСБ и др.(23) (табл. 2).

Таблица 2

Толл-рецепторы, лиганды (РАМП), вирусы

Общим свойством всех толл-рецепторов является их способность взаимодействовать со структурами вирусов – белками, гликопротеидами, липопротеидами, РНК и ДНК, формирование и проведение в ядро активационного сигнала, ведущего к повышению защитных неспецифических механизмов организма, в частности воспалительной реакции. Это, в конечном итоге, обеспечивает гибель и элиминацию патогена. Указанные рецепторы экспрессированы на моноцитах, макрофагах, нейтрофилах, ДК, NK-клетках и, в меньшей степени, на эозинофилах, Т-и В-лимфоцитах. Имеется взаимосвязь между толл-рецепторами и системой интерферонов. Пять типов толл-рецепторов (3, 4, 7-9) участвуют в индукции биосинтеза трех основных классов интерферонов (28, 67). В основе причин тяжелого течения и летального исхода человека от многих инфекций могут лежать дефекты толл-рецепторов, а также протеинкиназы, ассоциированной с рецептором ИЛ-1 (IRAK) (31,36).

Противовирусное состояние клетки. Множественные и многоуровневые биологические эффекты интерферонов на клетки организма суммируются с формированием так называемого «противовирусного состояния». Это состояние обусловлено синтезом двух ферментов, ингибирующих клеткой репродукцию вирусов. Один из них — 2’5’-олигоаденилатсинтетаза-активирует внутриклеточную рибонуклеазу, разрушающую молекулы РНК вируса, что снижает как их количественное содержание, так и интенсивность синтеза вирусных мРНК. Другой – протеинкиназа-катализирует фосфорилирование фактора элонгации ejF2a, и таким образом ингибирует процесс образования белков (2, 5). Хотя в результате этого клетка может погибнуть, но и репродукция вируса будет остановлена. Это состояние клеток, однажды индуцированное, неспецифически защищает их от проникновения широкого круга вирусов. Биологический эффект интерферонов осуществляется в три стадии: 1) индукции, в результате которой происходит дерепрессия генов интерферонов; 2) биосинтеза и секреции молекул интерферонов; 3) взаимодействия молекул интерферонов с рецепторами окружающих клеток (5, 21, 27).

Биологическая роль интерферонов в вирусной инфекции хорошо продемонстрирована на примере животных с нокаутом генов, контролирующих экспрессию рецепторов интерферонов. Животные с утраченной экспрессией данного типа рецептора высокочувствительны к большинству вирусов. Причем наибольший эффект достигался при дефекте рецептора первого типа для альфа-и бета-, но не рецептора второго типа гамма-интерферона, что подчеркивает большую значимость полноценности неспецифических механизмов в резистентности к вирусной инфекции, особенно на ее ранних этапах.

Цитокины и хемокины. Другие цитокины, помимо интерферонов, также играют важную роль в защите от экспансии вирусов. Провоспалительные цитокины — фактор некроза опухолей альфа (ФНО-а), ИЛ-1, ИЛ-6 и ИЛ-12 оказывают противовирусный эффект как in vivo, так и in vitro. Продуцируются они преимущественно активированными макрофагами. Активированные вирусами эпителио-и эндотелиоциты также способны их продуцировать. Важное значение играют цитокины, продуцируемые субпопуляциями CD4Th1 и CD4Th2 типа. Доминирование последних является предрасполагающим фактором в чувствительности к инфекции (10, 17, 18, 22).

Естественные киллеры. NK – клетки-большие гранулярные лимфоциты периферической крови и лимфоидных органов. В их цитоплазме содержатся гранулы с белком перфорином, вызывающим образование в мембранах клеток-мишеней пор (каналов), и гранзимами (белками, инициирующими апоптоз) (9, 16, 34). Эти гранулы высвобождаются из цитоплазмы клеток в процессе взаимодействия последних с клетками-мишенями (инфицированными вирусом или опухолевыми). Противовирусный эффект этих клеток также неспецифичен. На поверхности мембраны NK-клеток имеется два типа рецепторов – активационный и ингибиторный. Ингибиторный рецептор распознает широкий спектр молекул I класса гистосовместимости, экспрессированных на соматических клетках. При этом взаимодействии на мембране NK-клеток возникает ингибиторный сигнал, который и предупреждает лизис клеток-мишеней. Так нормальные соматические клетки защищаются от повреждающего действия естественных киллеров, т.е. они могут активировать ингибиторный рецептор (27, 28, 30). Инфицированные же вирусом клетки-мишени, как правило, характеризуются сниженной экспрессией молекул I класса на своей поверхности. Естественно, что такие клетки-мишени эффективнее распознаются активационным рецептором этих клеток. А так как ингибиторный сигнал при этом недостаточен или вовсе отсутствует, то, естественно, формирование активационного сигнала превалирует (рис. 1). В результате происходит быстрое прикрепление NK-клеток к поверхности клетки-мишени, из гранул высвобождаются молекулы перфорина, которые достигают мембраны, инфицированной вирусом клетки, и вызывают ее повреждение путем образования трансмембранного канала. Через это отверстие в цитоплазму клетки-мишени проникают белки-гранзимы, запускающие механизм апоптоза. Клетки-мишени при этом погибают. Установлено, что именно на ранних стадиях вирусной инфекции наблюдается процесс интенсивного увеличения содержания NK-клеток в периферической крови больных (35,49). Эти лимфоциты не формируют клеток памяти, а их функциональная активность регулируется интерферонами (альфа, бета) и некоторыми другими цитокинами. В дополнение к неспецифическому механизму они принимают участие в механизмах антителозависимой клеточной цитотоксичности, фиксируясь посредством Fc-рецепторов на клетках-мишенях, сенсибилизированных антителами (47, 55).

Моноциты и макрофаги. Моноциты и макрофаги являются одними из первых типов клеток, которые сталкиваются с вирионами в разных анатомических областях организма. Экспериментальными исследованиями подтверждено, что макрофаги играют важную роль в резистентности организма к вирусной инфекции. Например, новорожденные мыши высокочувствительны к вирусу герпеса 1-го типа вследствие дефектов макрофагов и их неспособности предотвратить репликацию вируса. Взрослые животные с низким количеством макрофагов также более восприимчивы ко многим вирусам (5, 43).

Макрофаги обеспечивают противовирусную резистентность несколькими путями: а) факторы внутриклеточной вирулицидности макрофагов не позволяют вирусам реплицироваться в них. Более высокой резистентностью и вирулицидной активностью обладают макрофаги, активированные гамма-интерфероном (48,55). Некоторые виды вирусов реплицируются или, по крайней мере, выживают внутри макрофагов, что может быть источником распространения инфекции; б) антителозависимой м непосредственной клеточной цитотоксичностью; г) продукцией интерферонов, других цитокинов и белков системы комплемента, обладающих противовирусными свойствами (43, 45).

Дендритные клетки-специализированные клетки иммунной системы организма, сконцентрированные в селезенке, лимфатических узлах и коже. Они составляют менее 1% всех клеток этих органов. Образуются из предшественников в костном мозге и относятся к системе мононуклеарных фагоцитов. ДК ответственны за презентацию чужеродных антигенов как CD4+ T – лимфоцитам хелперам, так и CD8+ T-лимфоцитам, включая наивные Т-клетки, т.е., которые ранее не встречались с вирусом (8, 10, 22). Среди профессиональных антиген-презентирующих клеток они наиболее эффективны в праймировании (стимуляции) иммунокомпетентных клеток. Зрелые ДК экспрессируют высокий уровень ко-стимуляторных молекул, необходимых для активации Т-лимфоцитов. Субпопуляция незрелых ДК, присутствующих в дерме кожи, слизистых желудочно-кишечного и респираторного тракта получила название клеток Лангерганса. Их функцией является вылавливание, захват и транспортировка чужеродных антигенов в Т-зависимые зоны лимфатических узлов (16, 20). Процесс их миграции ДК в лимфатический узел детерминируется хемотаксическими цитокинами – хемокинами. В лимфатическом узле они созревают и экспрессируют на мембране рецепторы хемокинов, а также молекулы МНС, комплексирующиеся со связанными с ними пептидами вирусных белков (1, 3). Эти ДК эффективно распознаются клонами антигенспецифических Т-лимфоцитов. В результате взаимодействия ТКР с комплексом-молекула МНС II класса + пептид они активируются, что и служит началом развития вирусспецифического иммунитета. Плазмацитоидные ДК в ответ на инфекцию продуцируют значительные количества альфа-интерферона, влияют на нормальный иммунный ответ и иммунопатологию (33, 35, 38, 42, 45).

Система комплемента. Система комплемента состоит из группы белков (около 30), циркулирующих в плазме крови (6, 23). При активации данной системы альтернативным, классическим или лектиновым путями они касскадно взаимодействуют и фиксируются на шероховатых поверхностях (мембране клеток, вирионах, бактериях, грибах, простейших). В мембране сложных вирусов и соматических клеток при этом образуются каналы (отверстия) (Рис. 1) и клетки погибают (23). Комплемент функционирует как общая для неспецифического и адаптивного иммунитета эффекторная система.

Рис. 1. Активация системы комплемента по альтернативному и классическому путям структурами вирусов

При вирусных инфекциях система комплемента активируется как по альтернативному, так и по классическому пути без участия специфических к вирусам антител. Ранние компоненты классического пути – С1 и С4-способны связываться с поверхностными белками вирионов. Возможно, что р15е, один из белков ретровирусов, фиксирует молекулы C1q субкомпонента и активирует классический путь. Фрагменты С3б, фиксированные на поверхности вирионов, выступают в роли опсонинов и усиливают фагоцитоз. На важную роль комплемента в противовирусной защите указывает и необычайно высокая чувствительность лиц с дефектами компонентов комплемента, к вирусной инфекции (8, 23). Течение заболевания обычно тяжелое и рецидивирующее. На поздних стадиях инфекции комплементфиксирующие вирусспецифические антитела распознают антигены вирусов, локализованные на мембране инфицированных клеток, или поверхностные антигены циркулирующих вирионов (51).

Естественные антитела. В сыворотке крови человека имеются естественные антитела к широкому спектру чужеродных антигенов, в том числе и вирусных, воздействию которых на протяжении жизни может подвергаться человек. В структуре поверхностных гликопротеидов многие вирусы содержат дисахарид – дигалактозу. Две молекулы галактоз связаны между собой альфа 1-3 связями (22, 41). Естественные антитела узнают и взаимодействуют с ними, нейтрализуют их функциональную активностью. Это ассоциируется с утратой инфекционности вирусов. Эти антитела принадлежат к IgM и IgG классам иммуноглобулинов, активируют комплемент по классическому пути, узнают инфицированные вирусом клетки и участвуют в реакциях антителозависимой клеточной цитотоксичности-АЗКЦ. По их уровню и классоспецифичности можно прогнозировать тип и интенсивность адаптивного иммунитета (40, 41).

Адаптивный противовирусный иммунный ответ. Адаптивный специфический противовирусный иммунитет формируется в результате реагирования иммунной системы на инфекцию, обусловленную вирусом конкретного вида, генетического или серологического варианта (29, 46, 62).


9-09-2015, 00:14

Страницы: 1 2 3 4
Разделы сайта