Неотъемлемым компонентом адаптивного иммунитета являются вспомогательные (акцессорные) клетки системы мононуклеарных фагоцитов – моноциты, макрофаги, ДК. При встрече они захватывают чужеродный материал, перерабатывают его до иммуногенной формы и представляют соответствующим клонам Т-лимфоцитов в форме, удобной для распознавания (пептидной). ДК локализуются преимущественно в коже и слизистых. Они эффективно связывают чужеродные антигены и инициируют иммунный ответ. Лимфоидные ткани (селезенка, лимфатические узлы) участвуют в фильтрации и фиксации вирусных антигенов. Располагающиеся в них макрофаги, ДК и лимфоциты кооперируются в иммунном ответе (35, 45). В периферических лимфоидных органах под влиянием антигена развиваются весь спектр событий антигензависимой дифференциации и созревания специфических клонов В-и Т-лимфоцитов и формирование специфического иммунитета.
Молекулы МНС I и II классов играют ключевую роль в обеспечении специфичности ответа на вирусную инфекцию (1, 9, 22). Молекулы МНС I класса являются гетеродимерами, состоящими из тяжелой цепи протяженностью 350 аминокислот и легкой цепи состоящей из 100 аминокислот. Тяжелая цепь имеет три внеклеточных (альфа-1, альфа-2 и альфа-3), трансмембранный и цитозольный домены. Бета цепь представлена молекулой бета-2 микроглобулина, формирующей четвертый внеклеточный домен, удерживаемый вместе нековалентными связями. Альфа 1 и альфа 2 домены структурно взаимосвязаны и образуют единую платформу со спиралевидными стенками. Эти стенки представляют своеобразную борозду (петлю), в которую упаковываются пептиды длиной 8-10 аминокислот, нарезанные протеазами в протеосомах из белков вируса (рис. 2).
Рис. 2. Общая схема развития адаптивного противовирусного иммунитета
Молекулы МНС II класса структурно и функционально подобны молекулам I класса. Они также являются гетеродимерами и представлены двумя цепями – альфа и бета, каждая из которых имеет по два внеклеточных домена — трансмембранный и цитозольный. Концевые альфа 1 и бета 1 домены также образуют своеобразную платформу с бороздой (петлей) в которую упаковываются пептиды вирусных антигенов длиной 14-18 аминокислот. Молекулы распознавания образуют комплекс с чужеродными пептидами – пептид + молекула МНС I или II класса (иммуногенный комплекс), относятся к суперсемейству иммуноглобулинов. Основной функцией данных молекул является селекция протективных пептидов антигенов вирусов из множества, образующихся в клетке. Это и является биологической основой формирования адаптивного вирусспецифического иммунитета (8, 22, 25). Поиск протективных пептидов вирусов — важнейшая задача при конструировании эффективных противовирусных вакцин. У многих вирусов таким требованиям отвечают антигены (пептиды) структурных белков.
Совокупность В-и Т-клеток, несущих на поверхности белковую молекулу (рецептор), комплементарную эпитопам белков вирусов, представляет собой клон соответствующих специфических лимфоцитов. Рецепторы В-и Т-лимфоцитов, как и клетки несущие их, и реализуемые ими функции различаются (9, 22, 30) (табл. 3).
Таблица 3
Характеристика гуморального и клеточного иммунного ответа
Рецепторами В-лимфоцитов являются фиксированные на их мембране молекулы антител. Они распознают уникальные фрагменты нативных поверхностных антигенов вируса (гликопротеидов, простых белков), определяющие их специфичность – «эпитопы», преимущественно конформационные. Имеется большое разнообразие рецепторов В-клеток, детерменированных совокупностью генов (9, 16, 17) (табл. 4).
Таблица 4
Разнообразие рецепторов, экспрессируемых В-лимфоцитами
В-клеточные эпитопы антигенов вирусов состоят примерно из 10-11 аминокислот. Их наибольшая плотность отмечается в структуре поверхностных белков капсида или перикапсида.
Рецепторы Т-лимфоцитов распознают эпитопы процессированных антигенов вирусов длиной 9-20 аминокислот в составе иммуногенного комплекса – пептид + молекула МНС I или II классов (1, 22, 24, 34). Распознавание чужеродных пептидов Т-клетками рестриктировано (разграничено). СD8+ Т-лимфоциты распознают пептиды в комплексе с молекулами МНС I класса, а CD4+ Т-лимфоциты в комплексе – пептид + молекулы МНС II класса. Репертуар специфических рецепторов Т-лимфоцитов у каждого индивидуума также весьма разнообразен (табл. 5).
Таблица 5
Разнообразие альфа/бета рецепторов Т-лимфоцитов
Оно определяется спектром наследованных от родителей аллелей генов иммуноглобулинов, ТКР и генов МНС. Репертуар антигенспецифических рецепторов лимфоцитов может достигать соответственно 109-1018 степени.
Гуморальный иммунный ответ. Гуморальный иммунный ответ при вирусной инфекции развивается преимущественно на поверхностные (структурные) и некоторые внутренние (неструктурные) белки вирусов (9, 10). Иммуногенность вирусных белков зависит от их химической структуры, молекулярной массы и многообразных факторов хозяина. Например, прионные белки не индуцируют заметной специфической иммунной реакции. Инфицирующая доза вируса, преимущественный путь внедрения и, соответственно, поступления в иммунную систему вирусных антигенов оказывают существенное влияние на кинетику и спектр индуцируемых антител. В эксперименте установлено, что внутривенное введение вирусов гриппа стимулирует более выраженный иммунный ответ, чем интраперитонеальное или подкожное. В процесс антителогенеза вовлекаются многие типы клеток – ДК, В-лимфоциты и Т-лимфоциты. Ответная реакция В-лимфоцитов начинается со связывания вирусных (чужеродных) белков с молекулами поверхностных рецепторов (иммуноглобулинов), экспрессированных на мембране наивных В-клеток (рис. 3).
Определенный тип В-клеток генетически запрограммирован на экспрессию рецепторов только одной специфичности. Это означает, что совокупность этих клеток распознает только один из множества эпитопов, локализующихся в молекуле антигена. Связанный с рецептором В-лимфоцитов антиген подвергается эндоцитозу и переваривается до олигопептидов связывающихся с определенными аллелями молекул МНС II класса (25, 27). Данный комплекс – пептид + молекула МНС II класса — транспортируется к мембране и затем экспонируется на ней. Т.е. В-клетка в этом случае выполняет роль антигенпрезентирующей клетки-АПК. Интенсивность образования и изотипспецифичность сывороточных и секреторных антител находится под контролем Т-системы лимфоцитов. CD4+ Т-лимфоциты, несущие на мембране ТКР той же специфичности, что и антигенспецифические В-клетки, распознают данный комплекс, активируются и в ответ продуцируют цитокины — ИЛ-2, гамма-интерферон, а также ИЛ-4, ИЛ-6, ИЛ-5 и ИЛ-10. Количество, спектр и соотношение продуцируемых ими в единицу времени цитокинов детерминирует интенсивность пролиферации и дифференциацию активированных В-лимфоцитов в плазматические клетки (ПК) – продуценты антител. ПК в результате стимуляции синтезируют значительные количества противовирусных поликлональных антител. В-клеточные сайты (эпитопы) поверхностных белков большинства вирусов локализуются в наиболее выступающих районах капсида или перикапсида. Более точная их локализация идентифицирована с помощью моноклональных антител в реакции нейтрализации и рентгеноструктурным анализом. Специфичность и аффинность продуцируемых к ним антител по ходу иммунного ответа существенно возрастает. Одновременно с накоплением ПК и пропорционально их количеству образуются эпитопспецифические В-клетки памяти (22). Аналогичные закономерности наблюдаются и при формировании иммунного ответа на иммунизацию. Кинетика развития гуморального иммунного ответа представлена на рис. 4.
Рис. 4. Динамика развития первичного и вторичного гуморального специфического противовирусного иммунного ответа
Первые этапы иммунного ответа на инфекцию соответствуют инкубационному периоду. Уже в его конце и в продромальном периоде у инфицированных лиц синтезируются вирусспецифические антитела IgM класса, составляя основу первичного иммунного ответа. Продукция антител начинается довольно быстро и за короткое время (1-2 недели) их уровень достигает высоких значений и в 2-8 раз превосходит таковой антител IgG изотипа. К концу 2-3 недели содержание IgM и IgG антител в сыворотке крови практически одинаково. Содержание антител IgM изотипа некоторое время еще остается на том же уровне, а затем в течение 20-30 дней резко снижается и через 1-3 месяца после завершения инфекции может полностью исчезать. Поствакцинальные IgM антитела исчезают из кровотока медленнее, чем постинфекционные. Следует отметить, что развитие первичного гуморального иммунного ответа (продукция антител) обычно достигает пика гораздо медленнее, чем накопление антигенспецифических эффекторных Т-клеток в ходе иммунного ответа. В разгар заболевания в результате иммунного ответа происходят как качественные, так и количественные изменения — переключение антителообразования плазматическими клетками антител с изотипа IgM на изотип IgG, более интенсивная их продукция созревание аффинных. Концентрация последних интенсивно нарастает в течение 2-4 недель и достигает наиболее высоких значений через 1,5-3 и более месяцев и определенное время поддерживается на постоянном уровне (8, 22). После этого их уровень также постепенно снижается, но при ряде инфекций сохраняется на протяжении жизни. Для благоприятного исхода вирусной инфекции иммунной системе индивидуума необходимо интенсивно продуцировать молекулы антител в количествах, многократно превышающих содержание вирионов и вирусных антигенов. В таких случаях содержание вирусных частиц (вирусная нагрузка) быстро снижается, угасают клинические симптомы инфекции. В последующем вирусспецифические видо-и серотипспецифические IgG антитела остаются основным изотипом антител, осуществляющим контроль инфекции во внутренней среде организма. Естественное инфицирование респираторными и кишечными вирусами сопровождается образованием секреторных и сывороточных антител IgA изотипа. Продукция специфических антител IgA класса начинается гораздо позднее, темпы их накопления медленные, а достижение пика (не очень высокого) приходится на 4-6-й месяц. При этом сывороточные антитела этого изотипа выявляются в большом проценте случаев (> 70%), а секреторные — в незначительном (<10%) (10).
Вместе с тем, при ряде вирусных инфекций в острую фазу антитела едва определяются в биологических жидкостях. Затем в течение 2-3 недель после завершения инфекции их биосинтез резко возрастает, что соответствует вторичному иммунному ответу, косвенно подтверждает перенесенную инфекцию и определяет резистентность к повторному заражению. Антитела с противовирусной активностью могут быть обнаружены в различных жидкостях организма – плазме или сыворотке крови, носовом, глоточном, бронхиальном секретах, цереброспинальной и слезной жидкостях; сперме, вагинальном секрете, испражнениях. Распределение классов антител в них варьирует. В сыворотке крови, как правило, определяются все три класса антител – IgG (доминируют), IgM, IgA. Большинство из них синтезировано плазматическими клетками костного мозга, лимфатических узлов и селезенки. В жидкостях слизистых доминируют антитела IgA изотипа, синтезируемые плазматическими клетками лимфоидной ткани, ассоциированной со слизистыми. Определяются также и антитела IgG изотипа, часть которых является результатом транссудации белков из кровеносного русла, а часть синтезировано локально. Интенсивная продукция антител и их нарастание от острой фазы болезни к периоду реконвалесценции является главным индикатором и критерием развития острой вирусной инфекции.
Противовирусная активность антител разных классов существенно варьирует. Вирусспецифические антитела IgA изотипа более эффективно защищают от вирусов, поражающих и реплицирующихся в слизистых, а IgG изотипа принимают участие в контроле вирусной нагрузки при инфекциях, протекающих с виремией. Нейтрализующая активность сывороток в отношении вирусов обычно ассоциируется с IgG. Даже минимальные титры вируснейтрализующих антител могут препятствовать развитию виремии, контролировать ее уровень и, соответственно, предотвращать генерализацию. Вирусспецифические антитела, кроме того, контролируют выделение вируса из респираторного и желудочно-кишечного тракта во внешнюю среду (55). Полная ингибиция репродукции вирусов в слизистых наблюдается при высоких титрах сывороточных антител. Соответственно их отсутствие, замедленная и недостаточная продукция, недостаточный уровень являются факторами, предрасполагающими к генерализации инфекции, проникновению вирусов в органы, ЦНС, выделению их во внешнюю среду, что в свою очередь повышает эпидемическую значимость таких пациентов.
Эффекторные функции антител. Антитела обладают широким спектром противовирусной активности: 1) нейтрализуют инфекционность вирионов; 2) блокируют прикрепление вирионов к рецепторам клеток и проникновение (депротеинизацию, пиноцитоз); 3) опсонизируют поверхность вирионов, облегчают захват их фагоцмтами, усиливают фагоцитарную реакцию; 4) взаимодействуют с антигенами вирусов, циркулирующими в крови, образуя иммунные комплексы; 5) активируют систему комплемента, лизируют оболочечные вирусы и инфицированные клетки; 6) индуцируют АЗКЦ инфицированных вирусом клеток NK-клетками, моноцитами и макрофагами.
Протективную активность противовирусных антител связывают преимущественно с их нейтрализующей активностью в отношении вирионов, находящихся в жидкой фазе (внеклеточно). Они агглютинируют вирусные частицы, вызывают конформационные изменения поверхностных белков вириона, препятствуют их взаимодействию с рецепторами клеток. Это в свою очередь сопровождается значительным уменьшением количества вновь инфицированных клеток в организме и количества вирусных частиц (вирусной нагрузки), как в органах, так и в крови. Антитела оказывают протективный эффект и на внутриклеточную фазу репликации вирусов. Фрагменты антител (Fab) способны проникать внутрь клеток и настигать вирус и его компоненты, блокируя важные этапы репликации, препятствуя сборке и выходу из клетки (9, 22).
Негативная роль антител при вирусной инфекции обусловлена их участием в иммунозависимом повреждении клеток и тканей, образовании иммунных комплексов, избыточной активации системы комплемента и АЗКЦ, сохранении инфекционности опсонированных вирионов в фагоцитах, длительным их выживанием (9).
Оценка гуморального иммунного ответа. Серологические исследования с целью выявления противовирусных антител в крови, оценки динамики их образования и уровня (титра) широко применяются в лабораторной практике. Главными типами исследуемых антител являются нейтрализующие, ингибирующие гемагглютинацию, комплементфиксирующие, иммунофлуоресцирующие, преципитирующие, цитотоксические. Для оценки антителообразования наиболее широко используют различные варианты иммуноферментного анализа, как наиболее специфичного, чувствительного, количественного, быстрого и автоматизированного. Все шире в диагностике и дифференциальной диагностике применяется метод выявления антител с помощью иммуноблоттинга, а также метод иммунохроматографических стрипов и др. (22).
Клеточный иммунный ответ. Этапы развития клеточного противовирусного иммунного ответа подобны таковым гуморального, но характеризуются рядом отличий. Когда вирус или белки его составляющие одним из известных путей поступают в организм, то они сталкиваются с фагоцитирующими клетками – макрофагами, ДК, т.е. профессиональными АПК. Эти клетки уникальны, так как только они способны переработать чужеродный антиген таким образом, что бы он индуцировал иммунный ответ определенной направленности и силы. Они экспрессируют на мембране оба типа молекул МНС I и II классов. ДК перерабатывают белковые антигены, поступившие двумя путями – экзогенным и эндогенным. При экзогенном пути чужеродный антиген захватывается с помощью эндоцитоза и затем расщепляется в эндосомах протеазами до мелких фрагментов — олигопептидов длиной 10-20 аминокислот, которые упаковываются в специальную борозду молекул II или I класса (34, 44) (рис. 5).
При эндогенном пути поступления белки вирусов синтезируются в АПК, транспортируются в цитоплазматические органеллы – протеосомы, в которых и происходит их дальнейшее расщепление до пептидов. Образованная из белков смесь олигопептидов транспортируется в эндоплазматический ретикулюм, где они соединяются с молекулами МНС I класса. Одновременно в клетке может присутствовать более 10 000 разных пептидов в количестве от 2-х до 4000 копий каждого. Большинство из них являются аутопептидами. По завершении процессинга и экспонировании комплекса – пептид + молекула МНС незамедлительно мигрируют в близлежащий регионарный лимфатический узел. В лимфоидной ткани такие ДК взаимодействуют только с теми CD8+ Т-лимфоцитами, ТКР которых распознает эпитопы чужеродного антигена (первый сигнал), экспрессированного на мембране АПК. Этот клон(ы) Т-лимфоцитов дополнительно получает второй сигнал от CD4+ Т-лимфоцитов или ДК в виде цитокинового (ИЛ-2) или костимуляторного сигнала через CD80-CD28 взаимодействия (37, 42).
Вирусная инфекция одновременно стимулирует развитие клеточного и гуморального ответов. Сбалансированность в образовании вирусспецифических антител и эффекторных Т-лимфоцитов разной специфичности поддерживается количественным содержанием и активностью двух регуляторных субпопуляций CD4+ Т-клеток — Th1 и Th2 типа, продукцией ими соответствующего спектра цитокинов – ИЛ-2 и гамма-интерферона или ИЛ-4, ИЛ-5 и ИЛ-10 (34, 45).
Кинетика Т-клеточного иммунного ответа изучена при ряде вирусных инфекций в эксперименте и при естественном развитии инфекции у человека. В структуре поверхностных и внутренних белков вирусов (полио-, гриппа, гепатитов В и С) установлены CD4+ и CD8+ Т-клеточные эпитопы. Клоны Т-лимфоцитов к эпитопам поверхностных антигенов характеризуются типоспецифичностью, тогда как к эпитопам внутренних белков – видо-и родоспецифичностью. Вирусспецифические цитотоксические CD8+ Т-лимфоциты появляются на 1-2-ой неделе (7-10 день) после инфицирования организма и их количество достигает пика на 3-6-ой неделе. После завершения инфекции в течение 3-6 недель их содержание довольно быстро снижается до неопределяемого уровня. Максимальное количество вирусспецифических ЦТЛ CD8+ T-лимфоцитов на пике ответа достигает 20% от циркулирующих в крови. Это CD8+ Т-клетки эффекторы. Время их жизни составляет примерно 5-6 дней. Динамика количественных параметров предшественников эффекторных ЦТЛ в течение инфекции характеризуются теми же закономерностями, что и их зрелых клеток, т.е. вначале их содержание увеличивается примерно в 100 – 10 000 раз, а затем снижается в 10-100 раз, но полностью они не исчезают. Выжившую популяцию CD8+ T-клеток, коммитированных антигеном, рассматривают как CD8+ Т-клетки памяти, поскольку при ответе на реинфицирование они вновь очень быстро пролиферируют. В противоположность ЦТЛ, которые трудно выявить после завершения инфекции, Т-клетки памяти, вероятно, персистируют в организме на протяжении жизни.
Описано три модели гибели инфицированных вирусом клеток: 1) Т-киллеры секретируют белок – перфорин, повреждающий мембрану клетки-мишени. В образованное отверстие инъецируется определенное количество молекул белков гранзимов, активирующих каскад внутриклеточных протеаз (каспаз), что и запускает апоптоз; 2) запуск апоптоза начинается с активации рецепторов гибели клеток – Fas (CD95+), клетка погибает в течение 4-6 часов; 3) третий путь опосредуется ФНО, протекает медленнее и завершается в течение 18-24 часов. Раннее и интенсивное накопление высокоафинных и высокоавидных вирусспецифических ЦТЛ – благоприятный признак, ассоциирующийся с низкой вирусной нагрузкой и способностью иммунной системы контролировать инфекционный процесс, замедленное – неблагоприятный признак, ассоциирующийся с высоким уровнем вирусной нагрузки, хронизацией, прогрессией болезни и летальностью(8, 22, 52).
Большую роль в понимании закономерностей Т-клеточного противовирусного иммунного ответа сыграло использование синтетических пептидов белков вирусов
9-09-2015, 00:14