Аминокислоты и РНК

Потребность в пищевом белке может быть полностью покрыта за счет смеси аминокислот. Этим пользуются в лечебном питании.

Аминокислоты применяют в медицине: для парентерального питания больных (т.е. минуя желудочно-кишечный тракт) с заболеваниями пищеварительных и других органов, а также для лечения заболеваний печени, малокровия, ожогов (метионин), язв желудка (гистидин), при нервно-психических заболеваниях (глутаминовая кислота). В животноводстве и ветеринарии - для питания и лечения животных, а также в микробиологической, медицинской и пищевой промышленности.

Изучение аминокислотного состава белков и обмена аминокислот проводят рядом цветных реакций, например нингидриновой реакцией, а также методами хроматографии и с помощью специальных автоматических приборов - анализаторов.

Классификация аминокислот

Все встречающиеся в природе аминокислоты обладают общим свойством - амфотерностью, т.е. каждая аминокислота содержит как минимум одну кислотную и одну основную группу. Общий тип строения аминокислот может быть представлен в следующем виде:

Как видно из общей формулы, аминокислоты будут отличаться друг от друга химической природой углеродным атомом и не участвующую в образовании пептидной связи при синтезе белка. Почти все амино- и карбоксильные группы участвуют в образовании пептидных связей белковой молекулы, теряя при этом свои специфические для свободных аминокислот кислотно- основные свойства. Поэтому все разнообразие особенностей структуры и функции белковых молекул связано с химической природой и физико-химическими свойствами радикалов аминокислот. Именно благодаря им белки наделены рядом уникальных функций, не свойственных другим биополимерам, и обладают химической индивидуальностью.

Аминокислоты классифицируют на основе химического строения радикалов, хотя были предложены и другие принципы. Различают ароматические и алифатические аминокислоты, а также аминокислоты, содержащие серу или гидроксильные группы. Часто классификация основана на природе заряда аминокислоты. Если радикал нейтральный (такие аминокислоты содержат только одну амино- и одну карбоксильную группу), то они называются нейтральными аминокислотами. Если же аминокислота содержит избыток амино- или карбоксильных групп, то она называется соответственно основной или кислой аминокислотой.

Современная рациональная классификация аминокислот основана на полярности радикалов, т.е. способности их к взаимодействию с водой. Она включает четыре класса аминокислот:

1) неполярные (гидрофобные)

2) полярные (гидрофильные) незаряженные

3) отрицательно заряженные

4) положительно заряженные при физиологических значениях pH

В представленной классификации аминокислот приведены наименования, структурные формулы, сокращенные обозначения и однобуквенные символы аминокислот, принятые в отечественной и иностранной литературе, а также значения изоэлектрической точки pI.

Перечисленные аминокислоты присутствуют в различных количественных соотношениях и последовательностях, в тысячах белков, хотя отдельные индивидуальные белки и не содержат полный набор всех этих аминокислот. Помимо наличия в большинстве природных белков 20 аминокислот, в некоторых белках обнаружены производные аминокислот (эти аминокилоты образуются после завершения синтеза белка в рибосоме клеток в результате постсинтетической химической модификациии): оксипролин, оксилизин, дийодтирозин, фосфосерин и фосфотреонин.

Первые две аминокислоты содержаться в белке соединительной ткани - коллагене, а дийодтирозин является основой структуры гормонов щитовидной железы. В мышечном белке миозине обнаружен также N-метиллизин.

Конкретные аминокислоты:

Аланин

Аланин, аминопропионовая кислота, ациклическая аминокислота, широко распространенная в живой природе. Молекулярная масса 89,09. аланин [CH3CH(NH2)COOH] входит в состав всех белков и встречается в организмах в свободном состоянии. Относится к числу заменяемых аминокислот, так как легко синтезируется в организме животных и человека из безазотистых предшественников и усвояемого азота. аланин [CH2(NH2)CH2COOH] в составе белков не встречается, но является продуктом промежуточного обмена аминокислот и входит в состав некоторых биологически активных соединений, например азотистых экстрактивных веществ скелетной мускулатуры - карнозина и анзерина, коэнзима аланина, а также одного из витаминов В - пантотеновой кислоты.

Аргинин

Аргинин, амино-гуанидинвалериановая кислота,

диаминомонокарбоновая аминокислота, в молекуле которой, помимо аиногруппы, есть амидиновая группа (NH2-C=NH). Аргинин имеет основные свойства (изоэлектрическая точка при рН 10,76), образует бесцветные кристаллы, растворимые в воде. Молекулярная масса 174,3. Аргинин входит в состав почти всех растительных и животных белков (некоторые простейшие белки клеточных ядер спермиев рыб - протамины - содержат около 80% аргинина). В мышцах беспозвоночных животных содержится свободная аргининфосфорная кислота - продукт фосфорилирования аргинина. Под действием фермента аргиназы, а также при щелочном гидролизе аргинин распадается на аминокислоты орнитин и мочевину; эта реакция играет важную роль в образовании мочевины в печени млекопитающих.

Глицин

Глицин, аминоуксусная кислота, гликокол, простейшая алифатическая аминокислота H2NCH2СOOH, бесцветные кристаллы, tпл. 232-236С (с разложением), плотность 1,595 г(см (15С). В 100 г воды при 25С растворяется25 г глицина. В абсолютном спирте и эфире нерастворим. С кислотами и основаниями образует соли, с многими катионами- комплексные соединения. Внутренние соли N- триалкилзамещенного глицина называют бетаинами. Глицин входит в состав большинства растительных и животных белков. Получают глицин гидролизом желатины или фиброина шелка. Глицин может быть синтезирован из монохлоруксусной

кислоты и аммиака. Биологическое значение глицина обусловлено участием его в построении белков и биосинтезе многих физиологических активных соединений (глутатиона, гиппуровой и гликохолевой кислот, порфиринов). Глицин применяют для приготовления буферных растворов, для синтеза гиппуровой и аминогиппуровой кислот и в пептидном синтезе.

Гистидин

Гистидин, амино-имидазолилпропионовая кислота - аминокислота, обладающая основными свойствами, незаменимая для многих животных. Организм человека способен к ограниченному синтезу гистидина. Входит в состав активных центров многих ферментов, в частности рибонуклеазы, транскетолазы. Начальная стадия ферментативного разрушения гистидина в организме - отщеплениеаммиака с образованием уроканиновой кислоты, выводящейся с мочой. Реакция дезаминирования гистидина необратима, катализирует ее фермент гистидин-аммиак-лиаза (гистидин-дезаминаза), обнаруженный в печени животных и у бактерий. Недостаток гистидина приводит ко многим нарушениям обмена веществ, т.ч. к торможению синтеза гемоглобина. Гистидин - предшественник специфических дипептидов скелетной мускулатуры - карнозина и анзерина. Декарбоксилирование гистидина ведет к образованию биологически активного амина - гистамина. Этот процесс катализирует гистидин-декарбоксилаза-фермент, относящийся к классу лиаз. Фермент действует только на L-изометр (природную форму) гистидина. Реакция обратимо тормозится ингибиторами дыхания - цианидом, гидроксиламином, семикарбазидом.

Аспарагиновая кислота

Аспарагиновая кислота, аминоянтарная кислота, COOHCH2CHNH2COOH, одна из дикарбоновых аминокислот, имеет слабокислые свойства ( изоэлектрическая точка при рН 2,77), молекулярная масса 133,10. Кристаллизуется в виде ромбических призм, плохо растворимых в холодной воде. Аспарагиновая кислота в значительных количествах входит в состав белков животных и растений, играет важную роль в обмене азотистых веществ. Участвует в образовании пиримидиновых оснований, синтезе мочевины. Наряду с глутаминовой кислотой играет важнейшую роль в реакциях переаминирования. Эта кислота может быть синтезирована в животном организме. Продуктом амидирования аспарагиновой кислоты является аспарагин.

Глутаминовая кислота

Глутаминовая кислота, глютаминовая, или аминоглутаровая кислота, аминокислота COOHCH2=CH2=CH(NH2)=COOH. Кристаллы, растворимые в воде, температура плавления 202С. Входит в состав белков и ряда важных низкомолекулярных соединений (например, глутатиона, фолиевой кислоты). Природная форма представляет D(+) изомер.

Оксипролин

Оксипролин, 4-оксипирролидин-2-карбоновая кислота. Оксипролин - гетероциклическая аминокислота (по химическому строению- иминокислота). Впервые выделена в 1902 году Э. Фишером из гидролизата желатины. Благодаря наличию двух асимметричных атомов углерода, оксипролин имеет 4 оптическиактивные формы (L- и D-О. и алло-L- и алло-D-О.), а также 2 рацемата. Природный L-О. -специфическая составная часть белков соединительной ткани - коллагена и эластина (до 13%), а также некоторых растительных белков; в других белках отсутствует или содержится в небольших количествах. Алло - L-О. обнаружен в свободном состоянии в сандаловом дереве, входит в состав ядовитых пептидов бледной поганки. В живых клетках L-О. образуется гидроксилированием связанного в белках пролина (кислородный атом гидроксила включается в оксипролин путем фиксации атмосферного О2). Один из продуктов превращения L-О. в организме - глутаминовая кислота.

Норлейцин

Норлейцин, CH3(CH2)3CH(NH2)COOH, аминокапроновая кислота, органическое вещество из класса аминокислот. В природных объектах не встречается, физиологической активностью не обладает. Имеет значение как модельное вещество (наряду с норвалином) при разработке методов синтеза аминокислот.

Лейцин

Лейцин (от греческого leukos - белый), аминоизокапроновая кислота, моноаминомонокарбоновая аминокислота; бесцветные кристаллы с tпл 293-293(С (с разложением), плохо растворимые в холодной воде, молекулярная масса 131,18. Лейцин выделен в 1820 году из мышечной ткани. Природный L-лейцин входит в состав всех белков животных и растений, является незаменимой аминокислотой, так как в организме человека и животных не синтезируется углеродный скелет его предшественника - кетоизовалериановой кислоты. Отсутствие лейцина в пище приводит к отрицательному балансу азота и прекращению роста у детей. Суточная потребность в лейцине у взрослых - 31мг/кг веса, у младенцев - 425мг/кг.Один из продуктов распада лейцина в организме - окси-метилглутаровая кислота (в виде ацилкофермента А), является важным промежуточным соединением при биосинтезе холестерина и других стероидов. Лейцин вместе с глутаминовой кислотой, метионином и другими аминокислотами применяется для лечения болезней печени, анемий, а также при некоторых психических заболеваниях.

Лизин

Лизин, диаминокапроновая кислота, диаминомонокарбоновая аминокислота, бесцветные кристаллы, молекулярная масса 146,19:

Лизин известен в виде двух оптически активных D- и L-формах. Природный L.- лизин (tпл 224-225С, с разложением) хорошо растворим в воде, кислотах и основаниях, плохо - в спирте. Выделен в 1889 году из гидролизата казеина, синтезирован в 1902 году; входит в состав почти всех белков животного и растительного происхождения (в большом количестве лизин содержится в гистонах и протаминах, в малом - в белках злаков. Лизин - незаменимая аминокислота, которая не синтезируется в организме человека и животных. Отсутствие лизина в пище замедляет рост у детей, у взрослых приводит к отрицательному балансу азота и нарушению нормальной жизнедеятельности организма. Суточная потребность в лизине у взрослых составляет 23мг/кг массытела, у младенцев - 170 мг/кг. В промышленности лизин получают микробиологическим синтезом; применяют для обогащения кормов животных и некоторых пищевых продуктов.

Пролин

Пролин, пирролидинкарбоновая кислота; гетероцикличная аминокислота (точнее иминокислота); существует в оптически-активных D- и L- и рацемической DL-формах. Вторичная аминогруппа пролина обусловливает его необычную нингидриновую реакцию (оранжевая окраска вместо сине-фиолетовой). L-пролин содержится во всех природных белках. Особенно богаты им растительные белки - проламины, белки соединительной ткани (10-15% в коллагене), казеин. L-пролин входит в состав инсулина, адренокортикотропного гормона, грамицидина С и других биологически важных пептидов. D-пролин входит в состав некоторых алколоидов. Гидролиз пептидных связей входящего в пептиды L-пролина катализируют ферменты пролиназа (связь по СО-группе) и пролидаза (связь по NH-группе). Пролин - заменимая аминокислота; ее биосинтез в живом организме протекает через полуальдегид глутаминовой кислоты или из орнитина. Окислением с участием аскорбиновой кислоты пролин превращается в оксипролин. DL-пролин синтезирован в 1900 году Р. Вильштеттером и выделен вместе с L-пролином в 1901 году из гидролизата казеина Э. Фишером.

Триптофан

Триптофан, (индолил)-аминопропионовая кислота, одна из важнейших природных аминокислот. Существует в виде оптически активных L- и D- и рацемической DL-формы. В небольших количествах L-триптофан входит в состав гамма-глобулинов, фибриногена, казеина и других белков.

L-триптофан

L-триптофан ю незаменимая аминокислота; суточная потребность взрослогл человека в ней составляет 0,25 гр, детей до 7 лет около 1 г. Биосинтез триптофана у микроорганизмов и растений осуществляется конденсацией аминокислоты серина с индолом, катализируемой ферментом триптофансинтазой. (Биосинтез триптофана у кишечной палочки использовали для доказательства коллинеарности гена и кодируемой им полипептидной цепи, когда положение каждой аминокислоты в полипептидной цепи определяется особым участком гена.) В организмах различных животных L-триптофан подвергается сложным превращениям, образуя ряд жизненно важных соединений: из продуктов распада L-триптофан у млекопитающих и человека образуются никотиновая кислота и серотонин; у насекомых - пигменты глаз (оммохромы), у растений - гетероауксин, индиго, ряд алкалоидов и другое. При гнилостных процессах в кишечнике из триптофана образуются скатол и индол. При нормальном распаде в организме 6 из 11 атомов углерода триптофана включаются в трикарбоновых кислот цикл через ацетил- и ацетоацетилкофермент А; остальные 5 - превращаются в СО2. Врожденное отсутствие у человека окисляющего триптофан фермента - триптофан-пирролазы приводит к слабоумию.Нарушения обмена триптофана у человека могут служить показателями ряда тяжелых заболеваний (туберкулез, рак, диабет). Причиной функциональных и органических расстройств у человека и животных может быть также дефицит триптофана в пище и кормах, связанный с недостаточным содержанием его во многих природных белках. Пищевая ценность многих белков можно повысить добавкой синтетического триптофана, получаемого химическим синтезом из актилонитрила, аммиака,цианистого водорода, фенилгидразина. Разрабатываются методы ферментативного синтеза триптофана из индола, пировиноградной кислоты и аммиака.

Изолейцин

Изолейцин, амино-метилвалериановая кислота, C2H5CH(CH3)CH(NH2)COOH, аминокислота, открытая Ф.Эрлихом (1904 г.) в продуктах распада белка фибрина; относится к группе алифатических моноаминокарбоновых кислот с разветвленной углеродной цепью. Для человека, животных и многих микроорганизмов изолейцин - незаменимая аминокислота, которую необходимо вводить с пищей. Суточная потребность человека в изолейцине около 1,5-2г.

Валин

Валин, аминоизовалериановая кислота, (CH3)2CHCH(NH2)-COOH, одна из незаменимых аминокислот. В состав белков валина входит в виде L-изомера. Содержание валина в белке обычно колеблется от 4,1% (миоглобин лошади) до 7-8% (сывороточный альбумин человека, казеин молока), в некоторых случаях - 13-14% (эластин соединительных тканей). Отсутствие валина в пище делает еенеполноценной по белку и приводит к отрицательному азотистому балансу.

Цистеин

Цистеин,дитиоди-аминопропионовая кислота, HOOCCH(NH2)CH2S2; серусодержащая аминокислота, дисульфид цистеина. Существуетв виде двух оптически активных L- и D- форм и двух неактивных DL- и мезо-форм. L-цистин входит в состав почти всех природных белков и пептидов; до 18% цистина (вместе с цистеином) содержится в кератине волос и шерсти. Ковалентные дисульфидные связи S-S, образуемые остатками цистина между отдельными полипептидными цепями и внутри них, поддерживают определенную пространственную структуру молекул белков и биологически активных пептидов. Сохранность дисульфидных связей обусловливает характерные свойства таких фибриллярных белков, кератины, а также нормальную активность гормонов - окситоцина, вазопрессина, инсулина; ферментов - рибонуклеазы, химотрипсина и других. Цистин - заменимая аминокислота; биосинтез и обмен его в организме тесно связан с цистеином,т.к. в живых организмах легко происходит их взаимное превращение.

Наследственное нарушение обмена цистина приводит к болезни детей - цистинозу, при котором кристаллы цистина откладываются в тканях, вызывая различные расстройства. Повышенное выделение цистина с мочой - цистинурия - в тяжелых случаях приводит к образованию цистиновых мочевых камней, из которых в 1810 году и был впервые выделен цистин.

Тирозин

Тирозин, (пара-оксифенил)-аминопропионовая кислота, ароматическая аминокислота. Существует в виде оптически-активных D- и L- и рацемической DL- форм.L-тирозин входит в состав многих белков и пептидов - казеина, фиборина, кератина, инсулина и других; легко выделяется из белковых гидролизатов вследствие плохой растворимости в воде. В состав белков входят также фосфорные эфиры L-тирозина. Тирозин - заменимая аминокислота, в организме животных и человека образуется при ферментативном окислнии фенилаланина (нарушение этого процесса приводит к тяжелому наследственному заболеванию - фенилпировиноградной олигофрении). Окисление тирозина ферментом тирозиназой - важная промежуточная реакция при биосинтезе меланинов, норадреналина и адреналина у человека. Иодированные производные тирозина - тироксин и трииодтиронин - гормоны щитовидной железы. Важную роль играет тирозин как предшественник при биосинтезе алкалоидов (морфин, кодеин, папаверин). Ферментативное окисление L -тирозин используют для получения медицинского препарата - L-ДОФА. При распаде тирозина в организме (с участием аскорбиновой кислоты) образуются фумаровая и ацетоуксусная кислоты, которые через ацетилкофермент А включаются в трикарбоновых кислот цикл.

Серин

Серин, амино-оксипропионовая кислота, HOCH2CH(NH2)COOH, природная аминокислота. Существует в виде двух оптически-активных - L- и D- и рацемической - DL-форм. Почти все белки содержат L-серин; особенно им богаты белки шелка - фиброин (до 16%) и серицин (до 40%), из которого серин был выделен в 1865 году немецким химиком Э.Кремером. В состав белков входят также фосфорные эфиры серина. Серин - заменимая аминокислота, ее предшественником в биосинтезе живыми организмами служит D-3фосфоглицериновая кислота (промежуточный продукт гликолиза). В клетках серин участвует в биосинтезе глицина, серусодержащих аминокислот (метионина, цистеина), триптофана, а также этаноламина, сфинголипидов, служит источником одноуглеродного фрагмента (превращение в глицин с участием тетрагидрофолиевой кислоты - ТГФК), который играет важную роль в биосинтезе холина, пуриновых оснований и прочего.

Серин + ТГКФ( Глицин + N5N10-метилен-ТГКФ. При распаде серина в организме образуется пировиноградная кислота, котораячерез ацетилкофермент А включается в трикарбоновых кислот цикл. Каталитические функции ряда ферментов (химотрипсин, трипсин, бактериальные протеазы, эстеразы, фосфорилаза, фосфоглюкомутаза, щелочная фосфатаза) обусловливаются реакционной способностью гидроксильной группы остатка серина, входящего в состав активного центра этих ферментов. В сферу действия ферментов сериновой группы входят реакции гидролиза пептидов, амидов, эфиров карбоновых кислот и переноса остатка фосфорной кислоты. Производными серина являются антибиотики циклосерин, азасерин.




8-09-2015, 21:37

Страницы: 1 2 3
Разделы сайта