Аденилатциклазный сигнальный механизм

Gi и Gs белков.

Коклюшный токсин вызывает АДФ-рибозилирование αi-субъединицы Gi белка, что ведет к потере его функциональной активности (Milligan, 1988; Reisine, 1990). Известно, что βγ-димер Gi белка обладает собственной регуляторной способностью и может стимулировать активность ФИ-3-К. Обработка мышечных мембран крысы и моллюска коклюшным токсином приводила к блокированию АЦ стимулирующего эффекта, как инсулина, так и ИФР-1 (таблица 7), что можно объяснить нарушением диссоциации гетеротримерного Gi белка на αi-субъединицу и βγ димер в условиях действия коклюшного токсина.

Таким образом, коклюшный токсин, предотвращая индуцируемую инсулином или ИФР-l стимуляцию активности ФИ-3-К, реализуемую через βγ-зависимый механизм, тормозит активацию АЦ.

Влияние холерного токсина на мембраны приводит к блокаде ГТФ-азной активности αs-субъединицы и тем самым переводит её в перманентно активированное состояние. В связи с этим обработка мембран холерным токсином может повлечь за собой стимулирование каталитической активности АЦ и наряду с этим ослабление регуляторных эффектов гормонов, действие которых на АЦ осуществляется через Gs белок (Milligan, 1988; Reisine, 1990). Обработка фракции мышечных мембран крысы и моллюска холерным токсином приводит к 2х-кратному увеличению базальной активности АЦ и снижению стимулирующего эффекта инсулина и ИФР-1 на активность фермента (таблица 7), что полностью согласуются со сведениями литературы и указывает на вовлеченность Gs белка в активацию АЦ с участием инсулина или ИФР-1.

Таким образом, совокупность данных, полученных с использованием коклюшного и холерного токсинов, указывает на участие как Gi, так и Gs белков в АЦ сигнальном механизме действия инсулина и ИФР-l.

Участие фосфатидилинозитол-3 киназы в реализации АЦ стимулирующего эффекта инсулина и ИФР-1

Для выяснения участия ФИ-3-К в АЦ сигнальном механизме действия пептидов инсулинового суперсемейства (инсулина и ИФР-1) был использован специфический ингибитор этого фермента - вортманнин. Инкубация мышечных мембран крысы и моллюска с вортманнином (10-9 –10-7 М) несколько снижает базальную активность АЦ (таблица 8). В отсутствии ингибитора инсулин и ИФР-1 отчетливо стимулируют активность АЦ. Между тем, АЦ стимулирующий эффект инсулина и ИФР-1 снижается в зависимости от концентрации ингибитора (10-9 –10-7 М). Ингибирующее действие вортманнина было наиболее выражено при концентрации 10-7 М (таблица 8). Установленные факты свидетельствуют об участии ФИ-3-К в АЦ сигнальном механизме действия инсулина и ИФР-1 в мышечных тканях изучаемых объектов.

Таблица 8. Влияние вортманнина (10–9 М–10–7 М) на стимуляцию ИФР-1 (10–8 М) и инсулином (10–8 М) активности АЦ в мембранной фракции скелетных мышцах крыс и гладких мышц моллюска Anodonta cygnea

Активность АЦ (пкмоль цАМФ/мин/мг белка)
объекты Крысы Моллюски
воздействия без пептида ИФР-l инсулин без пептида ИФР-l инсулин
без ворманнина 21±1.6 38.2±1.0* 41.4±2.3* 17.8±1.0 41.1±2.6* 24.5±1.0*

+вортманнин

10–9 М

17.9±2.0 9.4±1.3 9.7±1.4 15.8±2.0 14.6±1.3 14.2±0.4

+вортманнин

10–8 М

16.5±2.3 8.6±1.3 8.4±1.3 14.6±2.3 13.9±0.8 11.6±1.0

+вортманнин

10–7 М

13.2±1.9 6.3±0.9 6.8±0.8 14.3±0.9 13.8±1.8 7.4±0.5

Примечание: значения активности АЦ в присутствии пептидов, достоверно отличающиеся от активности фермента в отсутствии пептидов (р<0.05 ), отмечены звездочкой.

Для проверки гормоноспецифичности ингибирующего действия вортманнина на АЦ стимулирующие эффекты инсулина и ИФР-1 были использованы изопротеренол и серотонин, гормоны неродственные пептидам инсулиновой природы и реализующие действие через рецептор серпантинного типа, не связанный с ФИ-3-К сигнальной системой. Результаты этих опытов показали отсутствие влияния вортманнина на катехоламинчувствительную АЦ сигнальную систему (данные приведены в диссертации). Этот факт указывает на участие ФИ-3-К в, обнаруженным нами, АЦ сигнальном механизме действия инсулина и ИФР-1.

Участие протеинкиназы С в АЦ сигнальном механизме действия пептидов инсулинового суперсемейства

Для доказательства участия ПКС в АЦ сигнальном механизме действия пептидов инсулиновой природы использовали селективный блокатор ПКС – кальфостин (Yoing et al., 2005). В отсутствии кальфостина АЦ активирующий эффект инсулина и ИФР-1 составлял +101% и +73% у крыс, и +78% и +86% у моллюсков соответственно, по отношению к базальной АЦ, принятой за 100%. Как обнаружено нами, кальфостин (10-10 –10-8 М) блокировал АЦ стимулирующие эффекты инсулина и ИФР-1 в мембранных фракциях мышц крысы и моллюска. Наиболее выраженный ингибирующий эффект кальфостина обнаруживается при концентрации 10-8 М. В присутствии кальфостина (10-8 М) АЦ стимулирующий эффект инсулина и ИФР-1 снижался на 46% и 32% у крыс, и на 47% и 50% у моллюсков, соответственно, по отношению к максимальному АЦ стимулирующему эффекту пептидов, принятому за 100% (данные в диссертации).

Для идентификации изоформы ПКС, участвующей в АЦ сигнальном механизме действия пептидов инсулиновой природы использовали моноклональные антитела к ПКСζ, которая по данным литературы является одним из участников реализации сигналов инсулиновой природы.

Таблица 9. Влияние антител к ПКСζ на АЦ активирующий эффект ИФР-1 (10-8 М) и инсулина (10-8 М) в мышечных мембранах крысы и моллюска A.cygnea

Активность АЦ (
Объекты Крысы Моллюски
Воздейтсвия Без пептида ИФР-1 Инсулин Без пептида ИФР-1 инсулин
без антител 100±4.4 253±17 247±24 100±12 307±24 255±18
АТ 1:1000 104±9.5 102±14 108±16 166±25 251±21 254±12
АТ 1:100 98±8.2 95±12 103±5 163±18 327±27 237±20
АТ 1:10 94±6.8 68±3.6 88±8 145±5 403±33 238±25

Активность АЦ выражена в % к контрольным величинам, принятым за 100%.

Антитела к ПКСζ почти полностью блокировали АЦ стимулирующий эффект инсулина и ИФР-1 в мышечных мембранах крыс (таблица 9). Таким образом, использование моноклональных антител к ПКСζ показало, что эта изоформа фермента вовлечена в стимулирующее действие инсулина и ИФР-1 на АЦ в скелетных мышцах крыс. Между тем, в гладких мышцах моллюска эти антитела не оказывали блокирующего действия на АЦ стимулирующий эффект инсулина и ИФР-1. Мышцы моллюска обладают иным набором ПКС (Sossin et а1., 1996) и в АЦ стимулирующем действии этих пептидов инсулинового суперсемейства, по-видимому, участвует другая изоформа ПКС, близкая по своим свойствам к ПКСε из мозга позвоночных.

Таким образом, настоящее исследование привело к обнаружению и расшифровке ранее неизвестного АЦ сигнального механизма действия инсулина, ИФР-1 и ИПП моллюска в мышечных тканях позвоночных и беспозвоночных животных. Этот механизм имеет принципиально сходную структурно-функциональную организацию в случае инсулин- ИФР-1- и ИПП-компетентных АЦ сигнальных систем. Он может быть представлен в клетке шестикомпонентным сигнальным каскадом: рецептор-тирозинкиназа Þ Gi-белок (βγ-димер) Þ фосфатидилинозитол-3-киназа Þ протеинкиназа СzÞ Gs-белок Þ аденилатциклаза. АЦ является генератором внутриклеточного посредника – цАМФ, который способен через активацию цАМФ-зависимой протеинкиназы “A” передавать гормональный сигнал к различным эффекторным системам.

В плане изучения функциональной роли, обнаруженного нами, АЦ сигнального механизма, генерирующего цАМФ, было исследовано его участие в реализации регуляторного действия пептидов инсулиновой природы на такие фундаментальные клеточные процессы, как клеточный рост и апоптоз.

Участие АЦ сигнального механизма в митогенном действии пептидов инсулиновой природы

Для изучения митогенного действия пептидов инсулинового суперсемейства мы использовали фибробластоподобную культуру клеток Swiss 3T3, любезно предоставленную нам из банка культур Института цитологии РАН (Санкт-Петербург). Проведена функциональная характеристика АЦ системы в культуре Swiss3T3 клеток. Установлено, что АЦ система в культуре этих клеток

Таблица 10.Функциональные свойства АЦС культуры Swiss3T3 клеток

Воздействия

Активность АЦ

(пкмоль цАМФ/мин/мг белка)

Стимулирующий АЦ эффект в%
Базальная 30.59±1.41 100% (базальная)
NaF 10-2 М 178.91±4.15 585% (+485%)
форсколин 10-5 М 99.26±3.21 324% (+224%)
ГИДФ 10-6 М 111.20±3.48 364% (+264%)
ГТФ 10-5 М 82.98±2.92 271% (+171%)
ЭФР 10-9 М 168.31±4.75 550% (+450%)
ИФР-1 10-9 М 102.14±3.34 334% (+224%)
Инсулин 10-9 М 74.89±2.11 245% (+145%)

В скобках – активирующий АЦ эффект агентов гормональной и негормональной природы (в%), по отношению к базальной активности АЦ, принятой за 100%, стимулируется классическими негормональными активаторами АЦ - NaF, форсколином, ГИДФ, ГТФ, а также инсулином, ИФР-1 и ЭФР (таблица 10).

Проведенные нами исследования показали, что в культуре Swiss 3T3присутствует АЦС с функциональными свойствами, близкими к АЦС других клеток и тканей позвоночных, которая способна к восприятию внеклеточных сигналов различной природы.

Оценив функциональные свойства АЦ сигнальной системы культуры Swiss3T3 клеток, была исследована способность инсулина, ИФР-1 и ЭФР индуцировать в культуре клеток Swiss3T3 митогенный эффект, оцениваемый по включению [14 C]-тимидина в ДНК (Рис. 15-1). Показано, что инсулин (1000 нг/мл), ИФР 1 (50 нг/мл) и ЭФР (10 нг/мл) стимулировали синтез ДНК (прирост от 100% до 250%).

Исследуемые пептиды в тех же концентрациях оказывали стимулирующее влияние (2,5 мин) на активность АЦ. (Рис. 15-2). Для подтверждения участия цАМФ в реализации митогенного эффекта был использован его дибутириловый аналог цАМФ, обладающий способностью проникать в клетку. Этот аналог, взятый при низких концентрациях (10-12 -10-9 М), вызывал четкий митогенный эффект, по величине даже превосходящий аналогичный эффект ЭФР и ИФР-1. Эффект оценивали по включению [14 C]-тимидина в ДНК (Рис. 15-3).

Представленные экспериментальные данные подтверждают нашу гипотезу (Перцева, 2000) об участии АЦ сигнального механизма действия пептидов инсулинового суперсемейства и, продуцируемого им цАМФ, в реализации митогенных процессов.

Участие аденилатциклазного сигнального механизм в антиапоптотическом действии инсулина и инсулиноподобного фактора роста 1

Нами подобрана модель апоптоза, включающая клеточные линии, с разной степенью устойчивости к условиям, вызывающим незапрограммированную гибель клеток (апоптоз). В экспериментах использовали культуру клеток E1A+cHa-ras, обладающую высокой проапоптотической чувствительностью к удалению ростовых факторов и действию ДНК-повреждающих агентов («впадают в апоптоз») (Bulavin et al., 1999) и культуру клеток Е1А+Е1В с высокой устойчивостью как к действию ДНК повреждающих агентов, так и к удалению ростовых факторов из среды («не впадают в апоптоз»). В клеточных культурах была охарактеризована чувствительность АЦС к действию инсулина и ИФР-1 (Таблица 11).

Полученные результаты свидетельствуют о том, что клетки культуры линий Е1А+сНа-ras и Е1А+Е1В способны отвечать на действие инсулина и ИФР-1 (10-8М) активацией АЦ, что указывает на наличие в них рецепторов инсулина и ИФР-1, а также АЦС, чувствительной к этим пептидам. Клетки сохраняют чувствительность АЦС к инсулину и ИФР-1 как в среде с 10% сывороткой, так и в среде с 0.5% сывороткой.

Согласно данным литературы пептиды инсулинового суперсемейства – инсулин и ИФР-1, а также цАМФ, образующийся в результате активации АЦ, способны оказывать антиапоптотическое действие на клетки. Показано, что инсулин (10-7М), ИФР-1 (10-8М) и дибутирил-цАМФ (10-9М) оказывают ингибирующее влияние на апоптоз, вызванный удалением ростовых факторов сыворотки, в культуре клеток E1A+cHa-ras (Плеснева, 2003). Оценка антиапоптотического эффекта инсулина, ИФР-1 и дибутирил-цАМФ проводилась на клетках культуры E1A+cHa-ras с использованием метода клоногенной выживаемости, который относится к числу наиболее чувствительных способов тестирования антиапоптотического действия агентов. Обнаружено, что культивирование

Таблица 11.Влияние инсулина и ИФР-1 на активность АЦ в грубой мембранной фракции культур клеток E1A+cHa-ras и E1A+E1B

Условия Активность АЦ (пмоль цАМФ/мин/мг белка)

In vitro

E1A+cHa-ras

(клетки, впадающие в апоптоз)

Е1А+Е1В

(клетки, не впадающие в апоптоз)

Контроль Инсулин ИФР-1 Контроль Инсулин ИФР-1
Среда + 10% сыворотка

33.9±3.4

(100)

48.1±2.1

(142)

56.4±1.3

(166)

4.9±0.5

(100)

14.3±1.2

(292)

17.6±1

(359)

Среда + 0.5%

сыворотка (апоптоз)

95,9±3,4

(100)

137,0±9,0

(143)

181,6±8,2

(189)

26.7±0.5

(100)

61.4±1.2

(230)

86.3±2.1

(323)

In vivo

E1A+cHa-ras

(клетки, впадающие в апоптоз)

Е1А+Е1В

(клетки, не впадающие в апоптоз)

Контроль Инсулин ИФР-1 Контроль Инсулин ИФР-1

Среда +10%

сыворотка

4.1±0.29

(100)

6.0±0.9

(146)

12.2±0.5

(297)

5.2±0.3

(100)

8.5±1.0

(163)

11.4±1.3

(219)

Среда + 0.5%

сыворотка (апоптоз)

11.0±1.2

(100)

17.2±1.2

(156)

24.8±2.2

(225)

5.8±0.6

(100)

10.0±0.7

(172)

13.6±0.6

(234)

Примечание. В опытах in vitro гормоны (10-8 М) добавляли прямо в пробу, содержащую грубую мембранную фракцию клеток, для определения активности АЦ. Время инкубации 2.5 мин. В опытах in vivo инсулин (10-7 М) и ИФР-1 (10-8 М) добавляли к культурам клеток, время инкубации 5 мин. Цифры в скобках - эффект гормонов в процентах к контролю, принятому за 100%. Апоптоз индуцировали удалением ростовых факторов сыворотки из среды.

Трансформантов на среде без ростовых факторов уменьшает число живых клеток, способных дать потомство в клональном посеве минимум в 2 раза, по сравнению с клетками, культивируемыми в нормальных условиях (среда+10% сыворотки).

Показано, что только 43% культуры клеток «выживают» в условиях, когда клетки впадают в апоптоз (среда +0.5% сыворотки) по сравнению с контролем (среда+10% сыворотка, принято за 100%). В экспериментах, когда в среду с 0,5% сывороткой был добавлен инсулин, ИФР-1 или дибутирил-цАМФ в указанных выше концентрациях, способность клеток давать жизнеспособное потомство восстанавливалась до значений, составляющих около 70% (для инсулина: 77%, для ИФР-1: 67%, для дибутирил цАМФ: 66% по сравнению с контролем, принятым за 100%).

Таким образом, эксперименты показали способность инсулина и ИФР-1 через, обнаруженный нами, АЦ сигнальный механизм и продуцируемый им цАМФ, оказывать митогенное и антиапоптотическое действие в клеточных культурах.

Исследования подтверждают участие АЦ сигнального механизма в реализации антиапоптотического действия пептидов инсулинового ряда - инсулина и ИФР-1.

Функциональное состояние АЦ сигнального механизма действия инсулина при сахарном диабете

На основе концепции молекулярных дефектов в гормональных сигнальных системах как ключевых причин эндокринных заболеваний (Перцева, 2004) исследовано функционирование АЦ сигнального механизма при экспериментальном стрептозотоциновом сахарном диабете 1-го и 2-го типа у позвоночных (крысы) и диабетоподобном состоянии у беспозвоночных (моллюски).

Диабет вызывали однократным введением ( i . p .) стрептозотоцина (80 нг/г веса животного). На 30-сут стрептозотоцинового диабета обнаружена гипергликемия в крови крыс, в 4,2 раза превышающая уровень глюкозы у контрольных крыс. Впервые выявлено увеличение уровня глюкозы в гемолимфе моллюсков (в 2,5 раза) на 2-е и 4-е сутки развития диабетоподобного состояния. Обнаружено при диабете снижение АЦ-стимулирующего эффекта инсулина и его потенцирования гуаниновыми нуклеотидами у крыс и у моллюсков.

Инсулин независимый диабет (2-го типа) вызывали введением новорожденным крысятам (1-2 сут) однократно стрептозотоцина (80 нг/г веса животного). При этом типе диабета также возникают нарушения в АЦ сигнальном механизме действия инсулина. АЦ стимулирующий эффект инсулина и потенцирование не проявляется.

На основании полученных данных выявлены функциональные дефекты в АЦ сигнальном механизме действия инсулина при диабете, в мышцах крыс и моллюсков, затрагивающие дистальные звенья АЦ сигнального механизма на уровне каталитического компонента – АЦ, Gs-белка и его сопряжения с АЦ.

Заключение

Настоящее исследование привело к обнаружению и расшифровке ранее неизвестного АЦ сигнального механизма действия инсулина, ИФР-1 и ИПП моллюска в мышечных тканях позвоночных и беспозвоночных животных. Эти оригинальные данные расширяют современные представления о круге сигнальных путей действия пептидов инсулинового суперсемейства и способствуют формированию нового позитивного взгляда на вовлеченность АЦ сигнального механизма в действие гормонов и ростовых факторов инсулиновой природы, осуществляемого через рецепторы тирозинкиназного типа. До наших исследований в литературе существовала точка зрения об участии АЦ сигнального механизма только в действии гормонов, обладающих рецепторами серпантинного типа.

Важными представляются доказательства, полученные в работе, о распространенности обнаруженного АЦ сигнального механизма действия изученных пептидов в тканях как позвоночных, так и беспозвоночных животных. Установлена принципиально сходная структурно-функциональная организация инсулин-, ИФР-1- и ИПП-компетентной АЦ сигнальных систем. На современном этапе наших исследований она представлена в клетке шестикомпонентным сигнальным каскадом: рецептор-тирозинкиназа Þ Gi-белок (βγ-димер) Þ фосфатидилинозитол-3-киназа Þ протеинкиназа СzÞ Gs-белок Þ аденилатциклаза. АЦ сигнальный механизм охватывает стадии от рецептора тирозинкиназного типа до фермента – АЦ, являющейся генератором вторичного внутриклеточного посредника – цАМФ. Образовавшийся цАМФ способен через активацию цАМФ-зависимой протеинкиназы “A” передавать гормональный сигнал к различным эффекторным системам.

Открытый нами АЦ сигнальный механизм действия пептидов инсулиновой природы по своей структурно-функциональной организации наряду со сходством, обладает и существенными отличиями от известных до сих пор гормональных АЦ сигнальных систем. Эти отличия сводятся:

- во-первых, к участию в одном АЦ сигнальном механизме сразу дух типов гетеротримерных G-белков (Gs и Gi), которые обычно вовлечены в разные сигнальные системы;

- во-вторых, к взаимодействию рецепторов тирозинкиназного типа, специфичных для гормонов инсулиновой группы с Gi-белком, выступающим в качестве донора βγ субъединиц, а не αi-субъединицы как во многих других сигнальных системах.

- в-третьих, к большему числу, составляющих его блоков (шесть компонентов, во всяком случае) по сравнению с трехкомпонентным АЦ сигнальным механизмом действия биогенных аминов (рецептор серпантинного типа Þ Gs или Gi-белок Þ АЦ);

За период, прошедший со времени обнаружения нами АЦ сигнального механизма действия пептидов инсулинового суперсемейства (Plesneva et.al., 1994; Kuznetsova et al., 1999; Plesneva et al., 2001) в литературе появились данные, касающиеся отдельных его сигнальных блоков, подтверждающие установленную нами структурно-функциональную организацию этого АЦ сигнального механизма. Так показано, что рецепторы инсулина и ИФР-1 функционально сопряжены с Gi-белком (Kuemmerle, Murthy, 2001; Dupont et al., 2003; Kreuzer et al., 2004). Также установлено участие ФИ-3-К и ПКСz и связь их с продукцией цАМФ в ряде сигнальных путей действия пептидов инсулинового суперсемейства (Dessauer, Nguyen, 2005; Nguyen, Dessauer, 2005).

В плане изучения спектра функций, обнаруженного нами АЦ сигнального механизма, генерирующего цАМФ, установлено его участие в реализации регуляторного действия пептидов инсулиновой природы на такие фундаментальные клеточные процессы, как клеточный рост (стимуляция) (Плеснева и др. 1999) и апоптоз (ингибирование) (Плеснева и др., 2003), способствующие в итоге выживанию клетки.

Таким образом, выдвинутая нами гипотеза (Перцева, 2001) о важной роли АЦ сигнального механизма в реализации регуляторного действия инсулина и ИФР-1 на жизненно-важные клеточные процессы – клеточный рост, апоптоз нашла подтверждение в наших исследованиях (Плеснева и др., 1999; Плеснева и др., 2003).

Основываясь на эволюционном подходе Л.А. Орбели ко всем изучаемым явлениям (Орбели, 1958) мы использовали комплекс методов эволюционной физиологии применительно к изучению биохимических систем организма. Исследование включало несколько аспектов: а) изучение трех эволюционно родственных пептидов инсулинового суперсемейства – инсулина и ИФР-1 позвоночных, а также ИПП беспозвоночных (моллюска Anodonta cygnea); б) изучение действия этих пептидов на АЦС в тканях-мишенях животных разного филогенетического уровня (позвоночные – млекопитающие и птицы; а также беспозвоночные – моллюск Anodonta cygnea); в) часть исследований (птицы) проведена в онтогенезе; г) исследованы АЦ сигнальные механизмы действия пептидов инсулинового суперсемейства и выявлены функциональные нарушения в них при патологии – сахарном диабете.

В плане развиваемой в лаборатории концепции (Перцева, Шпаков, 2004) молекулярных дефектов в гормональных сигнальных системах как ключевых причин эндокринных заболеваний проведено исследование функциональных нарушений в АЦ сигнальном механизме действия инсулина и ИФР-1, возникающих при сахарном диабете. Впервые обнаружены дефекты в этом сигнальном механизме на уровне каталитического компонента – АЦ, Gs-белка и его сопряжения с АЦ, а также ослабление регуляторных метаболических эффектов гормона у крыс с экспериментальным стрептозотоциновым диабетом 1-го и 2-го типов.

Использование эволюционного подхода


8-09-2015, 21:47


Страницы: 1 2 3 4
Разделы сайта