Последовательность выхода лейкоцитов получила название закона Мечникова, согласно которому спустя несколько часов (1, 5-2 часа) с момента действия альтерирующего фактора интенсивно эмигрируют нейтрофилы и другие сегментоядерные лейкоциты, а затем моноциты и лимфоциты.
Процессу эмиграции предшествует нарушение осевого тока движения крови внутри сосуда. В условиях замедления кровотока эритроциты, объединяясь в «монетные столбики», занимают центральную часть сосуда, а лейкоциты, имеющие более низкую удельную массу, выходят из осевого тока сначала на границу плазматического слоя, а затем начинают прилипать к эндотелиальным клеткам сосуда. Важная роль в адгезии лейкоцитов отводится так называемым эндотелиально-лейкоцитарным адгезивным молекулам (ЭЛАМ), которые экспрессируются на поверхности лейкоцитов, эндотелиальных клеток и макромолекулах межклеточного матрикса в очаге воспаления. Активаторами экспрессии ЭЛАМ на лейкоцитах и эндотелиальных клетках в зоне воспаления являются биологически активные вещества - цитокины, такие как ИЛ-1, ИЛ-8, ЛТ В4, ФАТ, ФНО-a, a-интерферон, фракции комплемента С5а и Bb, хемотаксические факторы, липополисахариды бактерий и др. Под влиянием указанных медиаторов в лейкоцитах и клетках эндотелия сосудов происходят конформационные изменения мембраны, освобождаются и экспресссируются молекулы адгезии. Большинство цитокинов в одинаковой степени влияет на адгезивность лейкоцитов и эндотелия, однако отмечается и избирательное действие медиаторов на различные клетки. Компоненты комплемента - на моноцитах и гранулоцитах.
В настоящее время известно несколько классов молекул клеточной адгезии:
1. Селектины - лектиновые молекулы клеточной адгезии, опосредующие самую раннюю стадию взаимодействия лейкоцитов и сосудистой стенки. Селектины экспрессируются рано и не обеспечивают прочного прикрепления лейкоцитов к эндотелию сосудов. Выделяют три вида селектинов: L-селектины синтезируются всеми лейкоцитами,
Е-селектины синтезируются эндотелиоцитами. Указанные селектины обеспечивают феномен краевого стояния лейкоцитов. Источником
P-селектинов являются тромбоциты и эндотелий сосудов, помимо участия в процессах маргинации лейкоцитов, они способствуют адгезии тромбоцитов.
2. Интегрины - это гетеродимерные белки, экспрессируемые различными лейкоцитами и клетками гемопоэтического ряда. Эндотелий экспрессирует лишь некоторые интегрины. В настоящее время идентифицировано пять видов интегринов. Наиболее важными для миграционного и фагоцитарного процесса являются три гетеродимера. Указанные интегрины ответственны за поздние стадии взаимодействия лейкоцитов, тромбоцитов и эндотелия сосудов.
3. Адгезивные молекулы суперсемейства иммуноглобулинов (ICAM) - трансмембранные протеины с пятью внеклеточными доменами, экспрессируемые преимущественно эндотелием. Некоторые из этих молекул синтезируются неактивированными клетками и определяют интенсивность физиологической миграции лейкоцитов. В зоне воспаления под влиянием ИЛ-1, ФНО, гамма-интерферона активируются синтез и экспрессия молекул ICAM, что обеспечивает отсроченную фазу адгезии и эмиграции лейкоцитов. В группу белков, подобных иммуноглобулинам, включены лимфоцитарные рецепторы - СD2, СD58 (LFA-3). Они экспрессируются на Т-лимфоцитах и антигенпредставляющих клетках, участвуют в презентации антигена и контакте цитотоксических лимфоцитов с клетками-мишенями.
4. Адрессины - белки эндотелиальных клеток венул лимфоидных органов. Имеют большое значение в миграции лимфоцитов в очаги хронического и аутоиммунного воспаления. При остром воспалении адрессины менее значимы.
5. Хрящевые соединительные белки. Экспрессируются всеми видами лейкоцитов, распознают гиалуроновую кислоту, что обеспечивает перемещение лейкоцитов в основном веществе соединительной ткани.
После адгезии лейкоциты выходят за пределы сосуда на стыке между эндотелиальными клетками. Это объясняется округлением эндотелиоцитов и увеличением интервалов между ними. После выхода лейкоцитов контакты восстанавливаются. Амебиодное движение лейкоцитов возможно благодаря обратимым изменениям состояния их цитоплазмы (взаимоперехода геля в золь - тиксотропии) и поверхностного натяжения мембран, обратимой “полимеризации” сократительных белков – актина и миозина и использованию энергии АТФ анаэробного гликолиза.
В большинстве случаев острого воспаления внутрисосудистые перемещения лейкоцитов и их эмиграция занимают несколько часов. Как правило, первыми в очаг воспаления выходят нейтрофилы, они обнаруживаются в воспаленной ткани уже через 6-24 часа. Несколько позднее эмигрируют моноциты и лимфоциты (24-48 часов). Такая асинхронность эмиграции клеток обусловлена неодновременным появлением молекул адгезии и хемотаксических факторов, специфичных для разных лейкоцитов.
Нужно отметить, что временные интервалы эмиграции лейкоцитов и последовательность их выхода весьма относительны и определяются типом сосуда, видом воспаления и стадией воспаления.
Так, в зоне воспалительного процесса, инициируемого возбудителями туберкулеза, листериоза, хламидиоза, токсоплазмоза, вирусной инфекцией, первоначально в очаге воспаления доминируют мононуклеары, при аллергических реакциях - эозинофилы.
Направленное движение лейоцитов объясняется накоплением в очаге В. экзо- и эндогенных хемоаттрактантов – веществ индуцирующих хемотаксис, повышением температуры (термотаксис), а также развитием условий для гальвано- и гидромаксиса.
При взаимодействии рецепторов и хемоаттрактантов возникает гиперполяризация мембраны лейкоцита, увеличивается ее проницаемость для ионов Са, инициируется синтез функционально активных фосфолипидов и циклических нуклеотидов, растет число внутриклеточных органелл, функционирование которых обеспечивает перемещение лейкоцита и секрецию содержимого гранул. Помимо ориентированного движения лейкоцитов, хемоаттрактанты индуцируют адгезию лейкоцитов к эндотелию, способствуют краевому стоянию лейкоцитов и их агрегации в просвете микрососудов.
Хемотаксис опосредуется различными группами веществ:
1. Цитотаксигенами, которые, не являясь хемоаттрактантами, генерируют факторы хемотаксиса.
2. Цитотаксинами, которые оказывают прямое воздействие на лейкоциты. Некоторые цитотаксины специфичны для нейтрофилов (например, экстракт культуры Е.coli) , а другие цитотаксины индуцируют миграцию гранулоцитов и моноцитов [35].
Хемоаттрактанты могут иметь эндогенное и экзогенное происхождение. Экзогенными хемоаттрактантами являются пептиды бактерий, особенно содержащие N-формиловые группы. Свойствами эндогенных хемоаттрактантов обладают компоненты комплемента, иммуноглобулины, иммунные комплексы, лимфокины и монокины, кинины, лейкотриен В4, продукты липоксигеназного пути превращения арахидоновой кислоты, фактор, активирующий тромбоциты, фактор Хагемана, лизосомальные ферменты и другие.
После взаимодействия хемоаттрактантов со своими рецепторами на поверхности нейтрофилов и активированных моноцитов, хаотическое движение фагоцитов прекращается. Фагоциты начинают ориентировано перемещаться по направлению к объекту эндоцитоза в соответствии с градиентами концентрации хемоаттрактантов, то есть становятся ориентированными. Процесс эмиграции может не только стимулироваться, но и подавляться. Рост содержания в очаге В. кортизола тормозит ориентированный хемотаксис нейтрофилов. Гиперкортизолемия, тормозящая миграцию ориентированных полиморфонуклеаров, направлена на предотвращение трансформации воспаления из защитной в патологическую реакцию.
4.2.2.3. Фагоцитоз
Проникнув в очаг В., фагоциты выполняют свою главную фагоцитарную функцию. Фагоцитоз – эволюционно выработанная защитно-приспособительная реакция организма, заключающаяся в узнавании, активном захвате (поглощении) и переваривании микроорганизмов, разрушенных клеток и инородных частиц специализированными клетками – фагоцитами. К ним относятся полиморфно-ядерные лейкоциты (в основном нейтрофилы), клетки системы фагоцититрующих мононуклеаров (моноциты, тканевые макрофаги), а также клетки Купфера в печени, мезангиальные клетки почек, глиальные клетки в ЦНС и др.
В самом процессе фагоцитоза можно проследить четыре стадии:
1.приближение к фагоцитируемому объекту;
2.контакт, распознавание и прилипание к объекту;
3.поглощение объекта;
4.переваривание.
Главным механизмом приближения является хемотаксис.
Во второй стадии действует несколько механизмов. Первый из них — опсонизация — покрытие объекта фагоцитоза сывороточными факторами (антителами нормальных и иммунных сывороток). Иммуноглобулины М, G и Е метят объекты фагоцитоза. Роль метки они выполняют либо сами, либо с участием компонентов комплемента. Прилипание осуществляется посредством связи опсонинов со специфическими поверхностными рецепторами фагоцитов: для Fc-фрагмента иммуноглобулинов, для компонентов комплемента (СЗ). Причем имеет место комодуляция рецепторов: в условиях блокады Fc-рецепторов (избыточное количество иммунных комплексов или агрегированного IgG) макрофаг начинает вырабатывать фактор, индуцирующий продукцию Т-клетками лимфокина, который активирует фагоцитоз, опосредованный СЗ-рецепторами.
Второй механизм — инициация сигнала для поглощения частицы. Сигналом для поглощения объекта и последующих метаболических изменений может быть освобождение под влиянием макрофагаль-ной лейкопептидазы из состава молекулы IgG тетрапептидов тафцина и ригина. Тафцин и регин, действуя как медиаторы воспаления, резко усиливают фагоцитоз, антителогенез, антителозависимую клеточ-но-опосредованную цитотоксичность, миграцию лейкоцитов и стимулирует секрецию интерлейкина-2, выполняя регуляторную функцию в иммунной системе.
Механизм поглощения, составляющий третью стадию фагоцитоза, оптимально происходит только в условиях полного и равномерного покрытия объекта фагоцитоза опсонинами и включает:
последовательную ассоциацию опсонических детерминант частиц с панелью рецепторов фагоцита, инвагинацию наружной мембраны фагоцита по типу застегивания молнии;
образование псевдоподий, охватывающих объект и сливающихся друг с другом.
Первый механизм, присущ фагоцитозу клеток и крупных частиц, второй характерен для поглощения микроорганизмов. Результат в обоих случаях один — образование фагосомы с частицей внутри. В поглощении участвует цитоскелет фагоцитов, в частности, белки клатрин и актин. В течение 1—2 минут в клетке формируется несколько фагосом. При участии цитоскелета происходит слияние ли-зосом с фагосомами с образованием фаголизосомы.
В фаголизосомах начинается переваривание поглощенного объекта. Необходимо отметить, что одни лизосомальные ферменты не могут обеспечить достаточного киллерного действия. Эффективность фагоцитоза возрастает, когда в процесс подключается так называемая кислородная система. При фагоцитозе повышается потребление кислорода, причем столь резкое, что его принято называть “респираторным взрывом”. Смысл столь резкого (до 10 раз) повышения потребления кислорода состоит в том, что он используется для борьбы с микроорганизмами. Происходит образование токсичных для микробов активных форм О2 – перекиси водорода, гидроксильных радикалов, супероксидного аниона, синглетного кислорода. Эти высокоактивные соединения вызывают перекисное окисление липидов, белков, нуклеиновых кислот, углеводов и при этом повреждают построенные из этих веществ клеточные структуры микроорганизмов. Особенно легко окисляются ненасыщенные жирные кислоты, входящие в состав клеточных мембран. Кислородный механизм пускается в ход, когда рецептор фагоцита приходит в контакт с объектом фагоцитоза. Эффективность действия такого окислителя, как Н2 О2 , еще более возрастает, когда оно сочетается с действием миелопероксидазы и одного из галоидов (иона хлора или иода). Взаимодействие Н2 О2 , миелопероксидазы и хлора приводит к окислению ионов хлора и образованию гипохлорной кислоты, которая разрушает сульфгидрильные группы микробных ферментов, пептидные элементы клеточных мембран.
Конечно, в этой ситуации фагоцит и сам подвергается агрессивному действию названных веществ, но он обладает мощным механизмом, благодаря которому избыточного накопления активных форм кислорода не происходит. Защитную роль при этом играют прежде всего два фермента: глютатионпероксидаза и глютатионредуктаза, роль которых заключается в том, что первый переносит водород на окисленный глютатион, а второй – снимает этот водород и передает его на Н2 О2 , в результате чего образуются две молекулы воды.
Определенную роль играет каталаза, выводящие из клеток избыток перекиси водорода. Супероксидный анион обезвреживается особым ферментом - супероксиддисмутазой. У фагоцитов имеются и другие не связанные с кислородом (кислороднезависимые) механизмы борьбы с микроорганизмами. К ним относятся: лизоцим, разрушающий мембраны бактерий; лактоферрин, конкурирующий за ионы железа и, наконец, дефензины (белки со структурой насыщенной аргинином), катионные белки, нарушающие структуру мембран микроорганизмов. Совместное действие механизмов обеих групп приводит к разрушению объектов фагоцитоза.
Однако наряду с завершенным фагоцитозом в микрофагах наблюдается, например, при некоторых инфекциях фагоцитоз незавершенный или эндоцитобиоз, когда фагоцитированные бактерии или вирусы не подвергаются полному перевариванию, а иногда даже начинают размножаться в цитоплазме клетки. Эндоцитобиоз объясняют недостатком или даже отсутствием в лизосомах макрофагов антибактериальных катионных белков, что снижает переваривающую способность лизосмальных ферментов. Фагоцит, поглотивший бактерии, но не способный их переварить становится переносчиком инфекции по организму, способствует ее дессиминации.
4.3. Пролиферация и завершение процесса.
Воспаление всегда начинается с повреждения и гибели клеток. Но на определенном этапе инфильтрация, нагноение и связанные с ними процессы протеолиза и некроза приостанавливаются и на передний план выступают процессы восстановления. В соответствии с этим меняются и клеточный состав воспалительного инфильтрата. Полиморфно-ядерные лейкоциты постепенно исчезают (гибнут), а доминирующими становятся мононуклеары – моноциты и лимфоциты. Роль моноцитов заключается в том, что они, как и тканевые макрофагы, поглощают переваривают погибшие клетки, а также продукты распада, возникающие при альтерации. Лимфоциты обеспечивают гуморальный иммунитет.
По мере очищения очага В. наступает пролиферация (от лат. proliferatio – размножение) – интенсификация деления фибробластов и образования ими стромы соединительной ткани (коллагеновых структур для замещения в очаге В. дефектов ткани вследствие первичной и вторичной альтерации). Продуктивную или пролиферативную стадию В. иногда называют стадией репарации, что более точно, и указывает на суть процесса в этот период, а также на биологическое значение В., связывающего между собой результат повреждающего действия чрезвычайного раздражителя с процессами репарации. Пролиферацию завершает инволюция рубца, то есть уничтожение и элиминация лишних коллагеновых структур. Основные клеточные эффекторы пролиферации – это активированные мононуклеарные фагоциты, фибробласты и иммунокомпетентные клетки. Фибробласты в очаге В. образуют и высвобождают коллаген и энзим коллагеназу, ответственный за формирование коллагеновых структур стромы соединительной ткани. Кроме то они образуют фибронектин, определяющий миграцию, пролиферацию и адгезию фибробластов. Мононуклеары и лимфоциты секретируют цитокины как стимулирующие, так и подавляющие эти функции фибробластов. Нейтрофилы, как клеточные эффекторы В., влияют на пролиферацию, секретируя тканеспецифические ингибиторы, взаимодействующие по принципу обратной связи.
Одновременно с процессом пролиферации и даже несколько опережая его, идет процесс активного погашения воспалительного процесса, что проявляется ингибицией ферментов, дезактивацией В., детоксикацией и выведением токсических продуктов. Активность клеток В. тормозится разными механизмами. Что касается ингибиторов, то в этом отношении важнейшую роль играют a2 -макроглобулин, a-антихимотрипсин, антитромбин III и a2 -антиплазмин. Они являются главными ингибиторами кининобразующих ферментов крови и таким образом устраняют их влияние: расширение и повышение проницаемости сосудов. Кроме того, она являются главными ингибиторами системы коагуляции, фибринолиза и комплемента, ингибируют элластазу и коллагеназу лейкоцитов и тем самым предохраняют от разрушения элементы соединительной ткани. В прекращении разрушительных влияний при В. важную роль играет и устранение свободных радикалов. Внутри клеток свободные радикалы нейтрализуют супероксиддисмктаза, а в экстрацеллюлярной фазе – церулоплазмин, катализирую реакцию НО2 +НО2 —Н2 О+О2 .
Изменения взаимоотношение между клетками. Они перестают вырабатывать одни медиаторы и начинают синтезировать другие. Теперь на тот же медиатор клетка может дать совсем другой ответ, потому что на ее поверхности появляются совсем другие рецепторы, а прежние проникают внутрь (интернализация). Гистамин – типичный медиатор В., но его эффект в конце В. может стать совсем иным, чем вначале. Оказалось, что это зависит от того, какие рецепторы “выставлены” на эффекторных клетках (например, на эндотелиоцитах) в данный момент. Если это Н1 , то действие будет провоспалительное, а если Н2 , то – противовоспалительное.
В инактивации клеток В., кроме местных факторов, большую роль играют также и общие факторы, в том числе эндокринные. Гормон коры надпочечников кортизол тормозит синтез вазоактивных веществ в клетках, вызывает лимфопению, уменьшает число базофилов и эозинофилов. Кроме того, он стабилизирует мембраны лизосом, угнетает выработку интерлейкина-1. Что же касается фагоцитарной активности, то она к концу В. возрастает. Благодаря этому зона В. освобождается от некротизированный клеток, чуждых и токсических веществ.
Таким образом, в конце В., в деле его завершения решающую роль играют две клетки: фибробласт и эндотелиоцит. Два процесса совершаются в этот период: заселение зоны фибробластами и неоангиогенез, т.е. образование новых кровеносных и лимфатических сосудов.
5. Монокины
Монокины – клеточные медиаторы воспаления, которые образуются моноцита-ми/макрофагами на фоне антигенной стимуляции, а некоторые монокины мо-гут продуцироваться другими клетками (лимфоцитами, гепатоцитами, гли-альными клетками и др.) (Фрейдлин И.С.,1984; Паркер Ч.В.,1989). В настоя-щее время известно более 100 биологически активных веществ, секретируе-мых моноцитами/макрофагами, классификация которых приведена ниже.
1. Протеазы: активатор плазминогена, коллагеназа, эластаза, ангиотензин конвертаза.
2. Медиаторы воспаления и иммуномодуляции: ФНО, ИЛ-1, ИЛ-3, ИЛ-6, ИЛ-8, ИЛ10,ИЛ-12, ИЛ-15, интерферон, лизоцим, фактор активации нейтро-филов, компоненты комплемента С, С2, С3, С5.
3. Факторы роста: КСФ-ГМ, КСФ-Г, КСФ-М, фактор роста фибробластов, трансформирующий фактор роста.
4. Факторы свертывающей системы и ингибиторы фибринолиза: Y,YII, IX, X, ингибиторы плазминогена, ингибиторы плазмина.
5. Адгезивные вещества: фибронектин, тромбоспондин, протеогликаны. Далее приводится характеристика некоторых монокинов, играющих важную роль в индукции воспалительной реакции.
ИЛ-1 представляет собой полипептидный цитокин с молекулярной массой 15 килодальтон, высвобождается активированными моноцитами, В-лимфоцитами, тканевыми макрофагами, микроглиальными, мезангиальными и др. клетками. ИЛ-1 впервые был описан в 1972 году I. Gery и B. Waksman. ИЛ-1 существует в двух биологических формах: растворимой и связанной с мембраной моноцитов/макрофагов Синтез ИЛ-1 ко-дируется двумя генами, следствием чего является образование двух медиато-ров - ИЛ-1 и ИЛ-1, обладающих сродством к одному и тому же рецептору . ИЛ-1 обладает комплексом биологических эффектов – является эндопиро-геном и, соответственно, обусловливает развитие лихорадки при воспалении, стимулирует выход ПЯЛ из костного мозга, увеличивает образование и осво-бождение ими коллагеназы, вызывает экспрессию эндотелиально-лейкоцитарных адгезивных молекул (ЭЛАМ) на поверхности эндотелиоци-тов и лейкоцитов, способствует краевому стоянию лейкоцитов и стимулирует процесс их эмиграции.
ИЛ-1 вызывает экзоцитоз лизосомальных ферментов и свободных кислородных радикалов фагоцитами, которые подвергают деструкции нежизнеспособные клеточные элементы и бактериальные клетки.
ИЛ-1 является фактором клеточного роста, он усиливает пролиферацию фибробластов и повышает образование коллагена.
ИЛ-1 в качестве флогогена вызывает дегрануляцию тучных клеток с высвобождением медиаторов воспаления, активирует эндотелиоциты, стимулирует продукцию простациклина. ИЛ-1 действует на гипоталамо-гипофизарную систему, стимулирует секрецию АКТГ, СТГ, играет важную роль в развитии системной иммунной реакции.
К числу монокинов помимо ИЛ-1 относятся колониестимулирующий фактор, интерферон, фактор хемотаксиса лимфоцитов, бактерицидный фактор, цитолитический фактор и др.
Колониестимулирующие факторы (КСФ) – гликопротеины, влияющие на образование, дифференциацию и функции гранулоцитов и клеток системы мононуклеарных фагоцитов (Шанин В.Ю., 1996).
Различают несколько разновидностей КСФ: гранулоцитарный КСФ, гранулоцитарно-макрофагальный КСФ и мульти-КСФ (ИЛ-3).
КСФ образуются и в условиях нормы и возбужденными в зоне воспаления клеточными элементами.
Гранулоцитарный КСФ, кодируемый геном 17-й хромосомы, обра-зуется эндотелиальными клетками, фибробластами, макрофагами. Совместно с ИЛ-3 гранулоцитарный КСФ увеличивает содержание в циркулирующей крови мегакариоцитов и юных форм гранулоцитов.
Гранулоцитарно-макрофагальный КСФ кодируется геном 5-й хромосомы, секретируется эндотелиоцитами, фибробластами и фагоцитами, увеличивает содержание моноцитов
9-09-2015, 00:12