Прибор для измерения скорости кровотока

вертикальной плоскости. Горизонтальное зубчатое колесо редуктора жестко закреплено с вращающимся валом электродвигателя, а вертикальное с кривошипно-шатунным механизмом, который с помощью подшипников скольжения закрепляется в корпусе датчика (9). С задней стороны корпуса прикручивается крышка (10) с разъемом (11) SKINTOPMS, через который проходит сигнальный кабель (12) для соединения датчика с прибором для измерения скорости кровотока.

Для уменьшения потери энергии ультразвукового колебания при излучении в исследуемую среду используется промежуточная среда, заполненная акустически прозрачной жидкостью (13), в которой колеблется преобразователь. Для изолирования электрических контактов и соединений от рабочей жидкости используется непроницаемая перегородка (14). Конструктивно возможна установка перегородки непосредственно перед электродвигателем. Для большей герметичности между вращающимся валом и перегородкой ставится манжета уплотнительная резиновая (15). Таким образом, все вращающиеся части редуктора, кривошипно-шатунного механизма и корпус преобразователя находятся в рабочей жидкости. Это накладывает определенные требования на свойства жидкости: вязкости, плотности, химической реакции с материалами, из которых изготавливаются детали датчика. Жидкость должна обладать смазывающими свойствами для уменьшения трения валов в подшипниках скольжения, между зубьями колес редуктора, и уменьшения уровня шума работы механизмов. В качестве рабочей жидкости используется касторовое масло ГОСТ 6757-73.

Для исключения вытекания жидкости из корпуса датчика к нему прикручивается защитный колпачок (16), выполненный из звукопрозрачного, прочного материала для защиты движущегося преобразователя.

4.5 Технология изготовления пьезоэлектрического преобразователя

Пьезокерамические преобразователи в зависимости от назначения выполняются в различных конструктивных вариантах. В то же время можно выделить типовые технологические процессы, применяемые при изготовлении большинства конструктивных разновидностей пьезокерамических преобразователей. К ним следует отнести:

пайку электрических выводов к пьезокерамическим элементам и блокам;

склеивание пьезокерамических элементов и блоков;

герметизация преобразователей;

проверка параметров преобразователей, контроль герметичности и испытание гидростатическим давлением преобразователей.

4.5.1 Пайка пьезокерамического элемента

Пайка производиться для обеспечения электрического соединения посеребренной поверхности пьезокерамического элемента с электрическим выводом - проводам из латунного, бронзового, медного или серебряного проката. Все припаиваемые к пьезоэлементу выводы покрываются серебром гальваническим способом.

Так как для изготовления преобразователя, используемого при изготовлении проектируемого датчика, применяется пьезокерамика ЦТС-19П, поэтому исходя из технологических соображений, данную пьезокерамику необходимо паять низкотемпературным припоем с температурой плавления 91º. Поэтому в качестве припоя необходимо выбрать ПОС-61. Припой состоит из 40,2% свинца, 8,4% кадмия и 2% серебра (по весу).

Пайку и лужение пьезокерамического элемента и электрических выводов следует выполнять только с применением канифольно-спиртового флюса КСФ ( олова, этилового спирта). При производстве работ по лужению и пайке электрических выводов к пьезокерамике необходимо пользоваться паяльниками с автоматически регулируемой температурой жала.

Технологический процесс пайки пьезокерамического элемента включает в себя следующие операции:

подготовка электрических выводов:

подготовка поверхности пьезоэлемента;

лужение посеребренной поверхности пьезоэлемента;

пайка пьезоэлемента с электрическими выводами;

контроль качества пайки;

Подготовка электрических выводов перед припаиванием их к пьезоэлементу заключается в облуживании спаиваемой поверхности лепестков при зачистке изоляции, скрутке и облуживании концов проводов. Обслуживание необходимо вести припоем ПОС-91.

При подготовке пьезоэлементов необходимо снять слой консервирующего флюса с посеребренных поверхностей марлевым тампоном, смоченным в спирте. Посеребренная поверхность пьезокерамики должна быть неокисленной (без потемнения серебра). Если посеребренная поверхность имеет потемнения, то необходимо ее зачистить в месте пайки легким карцеванием латунными щетками. После пайки место пайки тщательно обезжиривают спиртом. Лужение мест пайки на посеребренной поверхности пьезоэлементов производиться специальными припоями с помощью паяльника с применением флюса КСФ. Для припоя ПОС-91 температура жала паяльника должна находиться в пределах . Лужение должно продолжаться не более 3с.

Пайку пьезоэлемента с электрическим выводом необходимо производить сразу после лужения, причем температура жала паяльника поддерживается такой, как и при лужении. После окончания пайки место спая тщательно очищается от остатков флюса марлевым тампоном, смоченным спиртом.

После пайки необходимо производить контроль места пайки. При осмотре места спая должны быть сплошными, без трещин, пузырей, вздутий и иметь чистую металлическую поверхность.

4.5.2 Склеивание пьезокерамического элемента

Следующим этапом сборки резонаторов является клеевое соединение пьезоэлемента с другими элементами конструкции - протектором и демпфером.

Типовые технологии склеивания металлических и неметаллических материалов регламентируются ОСТ5.9131-81. Для уменьшения толщины клеевого соединения, улучшения их растекания и устранения воздушных пузырей при использовании эпоксидных клеев допускается их нанесение на предварительно нагретые до 40-50 °С поверхности. ОСТ оговаривает способы подготовки к склеиванию поверхностей изделий из различных материалов, а также технологию приготовления клеев. Из эпоксидных клеев, используемых при сборке пьезопреобразователей, наибольшее распространение получили клеи на основе эпоксидной смолы, а также некоторые термостойкие клеи.

Применение некоторых технологических приемов позволяет уменьшить многие недостатки. В числе таких приемов могут быть названы предварительная сушка эпоксидной смолы при температуре 120-150°С до прекращения вспенивания и выделения газовых пузырей с последующим ее охлаждением; использование в качестве отвердителя полиэтиленполиамина, а также введение растворителя (ацетона). Добавление ацетона не только уменьшает в 2-3 раза вязкость компаунда, но и увеличивает его жизнеспособность до 24 ч при хранении компаунда в плотно закрытой емкости. При соблюдении обычной технологии склеивания, но с обязательной предварительной выдержкой (10-15 с) на воздухе поверхности с нанесенным клеем для свободного улетучивания разбавителя снижения прочности клеевых соединений не наблюдается при введении разбавителя до 30% по отношению к смоле.

При склейке детали необходимо уложить в приспособление, обеспечивающее давление в склеиваемом шве (5-8) 104 Па и толщину клеевого шва 80-120 мкм. Отверждение клеевого шва происходит при температуре 20±5°С в течение 48 ч.

Склеивание резонатора обязательно производится в специальном приспособлении, обеспечивающем необходимое прижимное усилие. Конструкция приспособления должна отвечать особенностям конструктивного исполнения демпфера.

Для получения волнового акустического сопротивления демпфера его состав должен быть следующим:

эпоксидная смола - 25 - 27 весовых частей,

полиэтиленполиамин - 0,9 - 0,6 весовых частей,

порошок вольфрама - 70 - 72 весовых чеастей,

глицерин - 30% от веса эпоксидной смолы.

В разогретую до 60 - 70 0 С эпоксидную смолу необходимо ввести отвердитель и тщательно перемешать смесь. Затем в смесь необходимо добавить вольфрам и залить смесь в заранее подготовленные формы и дать ей затвердеть.

К излучающей стороне пьезопластины приклеивают четвертьволновой согласующий слой из материала, акустическое сопротивление которого равно [8]:

, где

, -соответственно акустические сопротивления пьезопластины и среды. Наиболее подходящим материалом является кварцевое стекло. Толщина слоя, равная ¼ длинны волны, расширяет АЧХ преобразователя, появляются 2 максимума, расположенные на равном расстоянии от антирезонансной частоты, а также сглаживает ФЧХ преобразователя.

4.6 Технология сборки ультразвукового датчика

Корпус датчика изготовлен из фторопласта - 4, внутренняя поверхность корпуса покрыта слоем никеля, который наносится путем гальванического осаждения, а сверху слоем меди такой же толщины для защиты датчика от электромагнитных наводок. Сверху в корпус помещается электродвигатель и закрепляется там с помощью винтов. С другой стороны на вал электродвигателя плотно одевается непроницаемая перегородка и закрепляется с корпусом с помощью клея. Верхняя часть датчика плотно закрывается крышкой, в которой встроен разъем для вывода проводов. Снизу в корпус устанавливаются механические части, прикрепляется преобразователь, заливается жидкость и закрывается защитным колпачком, который непосредственно контактирует с исследуемой средой. При этом необходимо чтобы весь внутренний рабочий объем датчика был полностью заполнен жидкостью и отсутствовали воздушные полости. Провода, идущие от пьезопластины к разъему в крышке корпуса, должны быть неподвижно закреплены в специальных фиксаторах на внутренней части корпуса датчика.

5. Экономическая часть

Разрабатываемый измеритель скорости кровотока предназначен для использования в медицинских учреждениях для диагностики, планирования хирургического вмешательства и контроля лечения таких заболеваний как: ишемическая болезнь мозга, патологическая извитость сонных артерий, стенозирующие поражения брахиоцефальных артерий и многих других, поэтому разработка прибора актуальна.

5.1 Обоснование целесообразности разработки новой техники

Целесообразность разработки усовершенствованного прибора определяется его ролью и значением для медицинских учреждений. При этом важно, чтобы этот прибор был экономически эффективен и высокого качества. Качество же зависит от функционально-технических характеристик, а его изменение оценивается индексом технического уровня разрабатываемого прибора.

Для определения индекса технического уровня требуется:

обосновать перечень функционально-технических характеристик, отражающих уровень качества проектируемой техники;

выбрать аналог (прототип), который будет использоваться в качестве базы для сравнения. Прототип должен иметь то же функциональное назначение.

Функционально-технические характеристики проектируемого прибора и его аналога, их значимость заносятся в табл.4.

Индекс технического уровня проектируемого прибора:

Iту =, где

ai , ai 0 - уровень I-ой функционально-технической характеристики соответственно нового (проектируемого) и базового изделий;

mi - значимость i-ой функционально-технической характеристики качества изделия;

n - количество рассматриваемых функционально-технических характеристик.

Таблица 4. Функционально-технические характеристики для расчета индекса технического уровня проектируемого прибора

Функционально - техническая

характеристика

Единица

измерения

Уровень функционально-

технических характеристик

Значимость

характеристики

качества изделия

прототип

проектируемый

прибор

Минимальная

измеряемая скорость кровтока

мм/с

11

5

0,5

Средняя

рабочая частота

МГц

8

2

0,3

Производитель-

ность УЗ сканера

кадр/с

5

20

0,2

Значимость i-ой функционально-технической характеристики mI определяется экспертным путем, при этом = 1,0;

Т. к. повышение технического уровня изделия связано со снижением абсолютной величины функционально-технической характеристики, то ai и ai 0 в формуле индекса технического уровня необходимо поменять местами:

5.2 Определение показателей экономического обоснования проектируемого прибора

Затраты на проектирование и опытное производство нового прибора определяется по данным преддипломной практики по следующим статьям расходов:

основные расходы;

комплектующие изделия и покупные полуфабрикаты;

затраты на специальное оборудование;

заработная плата разработчиков и рабочих, занятых при изготовлении опытного образца;

цеховые расходы;

общезаводские расходы;

прочие расходы;

Заработная плата разработчиков нового прибора рассчитывается на основе трудоемкости стадий работ и считается по формуле:

З=,

где к - количество этапов,

ТЕ i - трудоемкость i-го этапа;

i - средняя дневная (часовая, месячная) тарифная ставка оплаты работ i-го этапа.

Расчет заработной платы сводится в таблицу 5.

Затраты на проектирование и изготовление образца сводятся в таблицу 6.


Таблица 5. Расчет заработной платы

Стадия Трудоемкость стадии, чел - ч. Исполнители Дневная (часовая) ставка t, р.

Средняя Дневная (часовая) ставка

, р.

Заработная плата Зi , р.

Заработная плата с учетом премии

Зосн i , р.

должность численность

Техническое

задание

8

Начальник

отдела

1

60

60

480

560

Техническое

предложение

8

Начальник

этапа

1

60

60

480

560

Эскизное

проектирование

24

Главный

инженер

1

50

50

1200

1450

Техническое

проектирование

24

Главный

инженер

1

50

50

1200

1450

Разработка

рабочей

документации

36

Главный

инженер

1

50

50

1800

2100

Изготовление

опытного

образца

1120

сварщик

техник

технолог

электрик

3

2

1

1

30

20

25

25

100

112000

125000

Испытания

(регулировка,

тестирование)

300

наладчик

2

35

35

10500

11900

Таблица 6

Затраты на проектирование и изготовление образца

п/п

Наименование статей затрат Затраты, р

Удельный

вес,%

1 Основные материалы 21550 2,64
2 Комплектующие и покупные материалы 350 000 42,88
3 З. п. разработчиков и изготовителей опытного образца 143 020 17,54
4 Отчисление на социальные нужды (35,8%) 51201,16 6,27
5 Накладные расходы (170%) 243134 29,79
6 Прочие расходы (5%) 7151 0,88

Удельные производственные затраты на разработку прибора рассчитываются по формуле:

УЗР =,

где N - годовой объем производства проектируемого прибора (реально возможный), шт.

УЗР =.

5.3 Себестоимость проектируемого прибора

Себестоимость проектируемого изделия Снт определяется укрупнено - по удельному весу в структуре себестоимости статьи затрат "Покупные изделия".

Этот метод укрупненного расчета основан на том, что удельный вес этой статьи затрат прототипа и проектируемого прибора в известных пределах остается неизменным и составляет 17,5%.

Затраты на комплектующие сводятся в таблицу 7.

Снтки /dки ,

где dки - удельный вес стоимости покупных комплектующих изделий в себестоимости изделия в%.

Снт =


Таблица 7.

Затраты на комплектующие

№п/п

Название

комплектующих

Количество

штук

Цена одного

изделия, руб

Общая стоимость
1 Диоды 30 1 30
2 Дроссели 25 5 125
3 Источники питания 2 1500 3000
4 Конденсаторы 1400 3 4200
5 Микросхемы 150 10 1500
6 Разъемы 110 15 1650
7 Резисторы 1900 1 1900
8 Стабилитроны 2 5 10
9 Транзисторы 120 25 3000
10 УЗ - датчики 4 4896 19585

5.4 Отпускная цена и экономическая эффективность проектируемого прибора

Так как прибор является товаром народного потребления годовые эксплуатационные расходы не рассчитываются. Отпускная цена базовой техники определяется по формуле:

Цб отп = Сб (1+рн ),

где Сб - себестоимость базовой техники; рн - нормативная рентабельность изделия (рн =20%)

Цб отп =

Полезный экономический эффект нового прибора рассчитывается от производства нового прибора.

Эфпб Iту - Сн ,

где Сб , Сн - себестоимость базового и нового приборов.

Эфп =

Отпускная цена рассчитывается по формуле:

Цотпб отпфп Кэ ,

где Кэ - доля полезного эффекта, учитывается на новую технику (Кэ =0,7)

Цотп =

Уровень экономической эффективности нового прибора

Езп =,

Езп =

Вывод: Рассчитанный уровень экономической эффективности свидетельствует о целесообразности проведения данной разработки.

6. Безопасность и экологичность проекта

6.1 Безопасность при работе с приборами, использующими ультразвук

Применение ультразвука для диагностических целей имеет более чем тридцатилетнюю историю, и в течение всего этого периода одним из наиболее дискутируемых и неоднозначных оставался вопрос о безопасности применения энергии ультразвуковых волн для пациента.

Следует отметить, что вопрос безопасности врача, проводящего обследование, обсуждался с не меньшим энтузиазмом, особенно на первом этапе появления сканирующих приборов. Тогда использовали несовершенные средства отображения информации, конструкция датчиков была неудобной, тяжелой, с выраженными механическими вибрациями. Безусловно, все эти факторы воздействовали на оператора, работавшего с прибором, и практика широкого клинического применения требовала разработки и утверждения соответствующих санитарно-гигиенических норм. При этом следует понимать, что среди рассматриваемых факторов отсутствовали эффекты ультразвуковой энергии, так как конструкция всех ультразвуковых датчиков, используемых в диагностической аппаратуре, исключает распространение ультразвуковых волн в направлении оператора. Отраженная энергия, распространяемая в тканях организма, воспринимается только лицевой поверхностью датчика, которая находится в контакте с телом пациента благодаря применению специализированных акустически согласованных (прозрачных) гелей. Таким образом, можно сделать вывод, что вопросы безопасности работы оператора с ультразвуковым оборудованием не имеют особой "лучевой" специфики, присущей другим методам лучевой диагностики; соответствующие нормативы содержатся в специализированных изданиях.

Остановимся на вопросе безопасности для пациента при проведении обследований на различных видах доплеровского оборудования в различных режимах.

Вопросами биологического воздействия ультразвука и его безопасного применения занимались в течение последних двадцати лет многие авторитетные международные организации: Всемирная организация здравоохранения, Всемирная федерация по применению ультразвука в медицине и биологии, Международная электротехническая комиссия (Технический комитет ТК-87 - "Ультразвук"), ряд национальных сообществ.

Все эти организации пришли к заключению в своих отчетных документах, что к настоящему времени не обнаружены эффекты, которые могли бы препятствовать широкому применению ультразвуковых волн для диагностических целей. При этом наиболее значимым и определенным как для разработчиков, так и для пользователей считается заключение, сделанное в декабре 1987 г. организацией AIUM (Американский институт по применению ультразвука в медицине):

"В диапазоне ультразвуковых частот, используемых для диагностических целей, до настоящего времени не было подтверждений значимых биологических эффектов при воздействии на ткани invivo нефокусированным ультразвуком с интенсивностями ниже 100мВт/см2 .

Далее, для времени экспозиции более 1 с и менее 500 с (для нефокусированного ультразвука) или 50 с (для фокусированного) такие эффекты не были зарегистрированы и при более высоких интенсивностях, когда произведение интенсивности и времени экспозиции не превышало 50 Дж/см2 ".

Данное заключение подтверждалось несколько раз и в последующие годы. Таким образом, в течение последнего десятилетия было общепризнанным считать ультразвуковое воздействие полностью безопасным при условии интенсивности излучения менее 100 мВт/см2 . При этом в целом ряде публикаций отмечалось, что данный порог является условным и принят для определенности как временный ориентир. В дальнейшем по мере проведения дополнительных экспериментов и исследований его значение может быть пересмотрено.

Следует отметить, что большинство ультразвуковых полей, генерируемых в доплеровских режимах, относятся к категории нефокусированных. Приведенное заключение AIUM можно представить в виде графика (см. рис.17).

Рис 17. Область безопасной эксплуатации ультразвукового диагностического оборудования

На графике сплошной линией обозначена зона, в которую попадают уровни интенсивности большинства из эксплуатируемых в настоящее время ультразвуковых приборов.

В то же время в некоторых моделях приборов не все новые методы формирования изображений и режимы излучения, в том числе импульсный доплеровский, удается реализовать, руководствуясь обозначенными порогами интенсивности. Данное оборудование условно показано на графике пунктирной линией. Подтверждением представленного графика служит информация, полученная во время экспериментального исследования, проведенного на 13 приборах с непрерывным доплеровским режимом и 19 дуплексных приборах с режимом импульсного излучения. Были выбраны приборы нескольких областей клинического назначения и с различными типами датчиков. Результаты измерений продемонстрировали значительный разброс параметров. При этом, если для режима непрерывного излучения пороговый уровень интенсивности был превышен только в 30% случаев, то для дуплексных систем с импульсным режимом порог был превышен в 95% случаев. Следует отметить, что измерения проводили в максимальных положениях излучаемой мощности и частоты повторения импульсов. Безусловно, полученные данные должны быть приняты во внимание как разработчиками новой аппаратуры, так и ее пользователями.

Для урегулирования данного вопроса (разброса значений интенсивности) организация FoodandDrugAdministration в США приняла документ (см. табл.8), регламентирующий пороговые уровни интенсивности в зависимости от области клинического применения.

Таблица 8. Уровень пороговой интенсивности ультразвука в зависимости от области клинического применения

Область применения I, мВт/см2

Кардиология

Периферические сосуды

Офтальмология

Визуализация плода

Другие применения

430

720

17

94

94

Как видно из приведенной таблицы, значения интенсивности могут превышать установленный порог в несколько раз. При этом следует руководствоваться последней фразой из заключения AIUM: "…такие эффекты не были продемонстрированы и при более высоких интенсивностях, когда произведение интенсивности и времени экспозиции составляло менее 50 Дж/см2 ).

В результате следует сделать вывод, что для выполнения отмеченного ограничения необходимо следить также за временем проведения обследования. Имеющиеся на сегодняшний день экспериментальные данные не позволяют определить предельно допустимые значения дозы ультразвуковых излучений, как это сделано для ионизирующих излучений. В то же время следует руководствоваться правилом минимально необходимого времени экспозиции для получения достаточной диагностической информации. Выполнение этого правила сопровождается рядом практических рекомендаций:

1) применение минимально необходимых для получения результата уровней излучаемой мощности;

2) использование минимально достаточного времени проведения процедуры;

3) применение минимально необходимых значений частоты повторения импульсов при работе в импульсном


8-09-2015, 22:51


Страницы: 1 2 3 4 5 6
Разделы сайта