Энергоноситель

ДДН + за счет видимого света, а эта ∆Н + , образовав­шись, просто развернула вспять Н+ - АТФазную ре­акцию, существовавшую ранее в качестве механиз­ма откачки из клетки гликолитических ионов Н+ . Так комплекс F0 F1 мог превратиться из АТФазы в АТФ-синтетазу (рис. 4).

Устройство бактериородопсина намного проще системы хлорофилльного фотосинтеза. Белковая часть бактериородопсина представляет собой одну полипептидную цепь средней длины, которая не содержит других коферментов и простетических групп, кроме ретиналя. Бактериородопсин чрезвы­чайно устойчив: без потери активности его можно кипятить в автоклаве при + 130°С, изменять содер­жание NaCl в омывающем мембрану растворе от ну­ля до насыщения, в широких пределах менять рН этого раствора. Более того, можно удалить выступа­ющие из мембраны концевые участки полипептидной цепи и даже расщепить эту цепь в одном месте по середине без ущерба для активности насоса. В то же время эффективность бактериородопсина как преобразователя энергии сравнительно низка: всего 20% энергии светового кванта превращается в ∆Н + . При этом на один поглощенный квант через мембрану переносится один ион Н+ .

Рис. 4. Бактериородопсиновый фотосинтез со-лелюбивых архебактерий. Ионы 1-Г откачиваются из клетки бактериородопсином - белком, содер­жащим ретиналь в качестве хромофора, то есть группировки, поглощающей видимый свет. Ионы Н* возвращаются в клетку, двигаясь "под гору" че­рез Н+ -АТФазный комплекс F0 F,. При этом оказы­вается, что Н+ - АТФаза катализирует обратную ре­акцию, то есть синтез АТФ, а не его гидролиз

Хлорофилльный фотосинтез

Хлорофилльный фотосинтез отличается от бактериородопсинового большей эффективностью ис­пользования светового кванта. Он устроен таким образом, что либо на каждый квант переносится че­рез мембрану не один, а два иона Н+ , либо помимо транспорта Н+ происходит запасание энергии в форме углеводов, синтезируемых из С02 и Н2 О. Вот почему бактериородопсиновый фотосинтез был от­теснен эволюцией с авансцены. Он сохранился только у бактерий, живущих в экстремальных усло­виях, где более сложный и менее устойчивый хлорофилльный фотосинтез, по-видимому, просто не мо­жет существовать.

Хлорофилльный фотосинтез катализируется фер­ментной системой, включающей несколько белков. Квант света поглощается хлорофиллом, молекула которого, перейдя в возбужденное состояние, пе­редает один из своих электронов в фотосинтетиче­скую цепь переноса электронов. Эта цепь пред­ставляет собой последовательность окислительно-восстановительных ферментов и коферментов, на­ходящихся во внутренней мембране бактерий или хлоропластов растений, где локализованы также белки, связанные с хлорофиллом. Компоненты це­пи содержат, как правило, ионы металлов с пере­менной валентностью (железо, медь, реже марганец или никель). При этом железо может входить в состав тема (в таком случае белки называются цитохромами). Большую роль играют также негемовые железопротеиды, где ион железа связан с белком че­рез серу цистеина или реже азот гистидина. Помимо ионов металлов роль переносчиков электронов иг­рают производные хинонов, такие, как убихинон, пластохинон и витамины группы К.

Перенос по цепи электрона, отнятого от возбуж­денного хлорофилла, завершается по-разному в за­висимости от типа фотосинтеза. У зеленых бакте­рий, использующих комплекс хлорофилла и белка, называемый фотосистемой 1 (рис. 5, а), продуктом оказывается НАДН, то есть восстановленная форма НАД+ . Восстанавливаясь, то есть присоединяя два электрона, НАД+ связывает также один Н+ . В даль­нейшем образованный таким образом НАДН окис­ляется, передавая свой водород на различные субст­раты биосинтезов.

Что касается хлорофилла, окисленного цепью, то у зеленых серных бактерий он получит недостаю­щий электрон от сероводорода (H,S). В результате образуются также элементарная сера и ион Н+ . Бе­лок, окисляющий H2 S, расположен на внешней поверхности бактериальной мембраны, а белок, восстанавливающий НАД+ , — на внутренней ее по­верхности. Вот почему оказывается, что запускае­мый светом перенос электронов от H,S к НАД"1 " об­разует ионы Н+ снаружи и потребляет их внутри бактерии. При этом внутренний объем клетки заря­жается отрицательно относительно внешнего. Тем самым создается ∆Н + , которая потребляется Н+ - АТФ-синтазой (комплексом факторов F0 и F,), об­разующей АТФ при переносе ионов Н "под гору", то есть снаружи внутрь.

Другой тип бактериального фотосинтеза обна­ружен у пурпурных бактерий (рис. 5. б). Здесь дей­ствует набор ферментов, отличающихся от фер­ментного комплекса зеленых бактерий. Это несущая хлорофилл фотосистема 2 и комплекс III. Как и в предыдущем случае, процесс начинается с поглощения кванта хлорофиллом. Первоначатьно перенос электронов происходит по фотосистеме 2.

Затем вступает комплекс III, способный транспор­тировать электроны сопряженно с откачкой ионов Н+ из бактерии. Процесс завершается возвращени­ем электрона с комплекса III на хлорофилл. Что ка­сается ионов Н+ , то они возвращаются в клетку че­рез Н+ -АТФ-синтазу, образуя АТФ.

Отличительная черта фотосинтеза у пурпурных бактерий состоит в том, что система не нуждается во внешнем доноре электронов. Откачка ионов Н+ осуществляется путем циклического переноса элек­тронов, поддерживаемого энергией света. Данное обстоятельство можно отнести, по-видимому, на счет эволюционного усовершенствования фото­синтеза пурпурными бактериями, которые по мно­гим признакам являются эволюционно более про­двинутой группой, чем зеленые серные бактерии.

Рис. 5. Хлорофилльный фотосинтез зеленых сер­ных (а) и пурпурных (б) бактерий: а - хлорофилл, связанный с особым белковым комплексом - фо­тосистемой 1 (ФС1), возбуждается квантом света и отдает электрон по цепи электронных перенос­чиков на НАД+ . Восстанавливаясь, НАД* связыва­ет внутриклеточный ион НГ. Потеря электрона на хлорофилле компенсируется окислением серово­дорода до серы и иона ИГ снаружи бактериальной клетки. Движение Н+ внутрь клетки через ком­плекс F0 F1 дает АТФ; б - хлорофилл, связанный с белком фотосистемы 2 (ФС2), поглощает квант света и запускает циклический перенос электро­нов. В этом процессе участвуют переносчики элек­тронов ФС2 и дополнительного белкового ком­плекса III. Перенос электронов комплексом III со­пряжен с откачкой ионов Н+ из клетки. Откачанные ионы I-Г возвращаются через комплекс F0 F, с об­разованием АТФ

Следующим шагом в эволюции фотосинтеза стали, по-видимому, цианобактерии. Цепь перено­са электронов в этом случае представляет собой комбинацию: а) фотосистемы 1 зеленых бактерий, б) фотосистемы 2 и комплекса III пурпурных бакте­рий и в) дополнительного комплекса, расщепляю­щего воду на О2 и Н+ (рис. 6). Фактически донором электронов вместо сероводорода (встречающегося в достаточных количествах лишь в некоторых придан­ных нишах) служит вездесущая вода, запасы которой практически неограниченны. В результате конечный акцептор электоров — НАДФ+ восстанавливается, а вода окисляется. Образующийся НАДФН окисляется затем сложной системой восстановления угле­кислого газа до глюкозы. Таким образом, фотосин­тез цианобактерии параллельно с образованием АТФ дает углевод — одно из главных резервных ве­ществ современных живых клеток. Нет сомнений, что цианобактерия является эволюционным пред­шественником хлоропластов — органелл зеленыхрастений, энергетика которых устроена в основном по той же схеме, что показана на рис. 6.

ДЫХАТЕЛЬНЫЙ МЕХАНИЗМ ЭНЕРГООБЕСПЕЧЕНИЯ

Побочным продуктом фотосинтеза у цианобактерий и растений служит молекулярный кислород. Нарастание его концентрации в атмосфере привело к появлению ферментов, убирающих этот сильный окислитель, опасный для жизнедеятельности. Веро­ятно, первой функцией ферментов, восстанавлива­ющих О2 до Н2 О, было снижение внутриклеточной концентрации кислорода. Однако в дальнейшем аэ­робная клетка научилась извлекать пользу из этого процесса, создав дыхательную цепь электронного транспорта, сопряженного с откачкой ионов Н+ .

Дыхательная цепь некоторых современных бак­терий включает уже знакомый нам комплекс III, служащий связующим звеном между двумя другими белковыми комплексами. Однако это уже не фото­системы 1 и 2, а ферменты, выполняющие функ­ции, противоположные таковым фотосистем 1 и 2. Ферменты, о которых идет речь, были названы ком­плекс I и комплекс IV.

Комплекс I не восстанавливает никотинамидный нуклеотид, а окисляет его. Комплекс IV не окисляет воду до О2 , а восстанавливает О2 до воды. В итоге мы имеем сложную цепь реакций, начина­ющихся с окисления НАДН и кончающихся восста­новлением О2 . Все три комплекса дыхательной це­пи способны откачивать из клетки ионы Н+ сопряжено с переносом электронов (рис. 7).

Рис. 6. Хлорофилльный фотосинтез цианобакте­рии. Квант света, поглощенный хлорофиллом фо­тосистемы 1, возбуждает перенос электронов по цепи, что завершается восстановлением НАДФ+ до НАДФН. Окисленный хлорофилл фотосисте­мы 1 восстанавливается комплексом III, который, в свою очередь, получает электрон от фотосисте­мы 2. Донирование электрона фотосистемой 2 требует еще одного кванта света (поглощаемого хлорофиллом этой фотосистемы). Потеря элек­трона на хлорофилле фотосистемы 2 компенсиру­ется за счет окисления молекулы воды до О2 и Н+ . Ферменты, катализирующие всю цепь реакций переноса электрона от Н2 О до НАДФ*, расположе­ны в мембране таким образом, что ионы Н+ отка­чиваются из бактериальной клетки, чтобы затем войти внутрь через FC F. и сделать АТФ. В хлоро-пластах зеленых растений происходят те же собы­тия, но ориентация всех ферментов противопо­ложна той, которая имеет место у цианобактерии и показана на рис. 6. Соответственно у хлоропла­стов фотосинтетическая цепь накачивает ионы Н+ внутрь, а комплекс F0 F, переносит их наружу

Подобно тому как хлоропласты произошли от цианобактерии, митохондрии животных, растений и грибов ведут свое происхождение от аэробных бактерий. Поэтому неудивительно, что митохондриальная дыхательная цепь описывается той же схе­мой, что изображена на рис. 7.

Рис.7. Механизм дыхательного фосфорилирования в аэробных бактериях и митохондриях. Фер­ментные комплексы I, III и IV катализируют пере­нос электронов от НАДН к О2 с образованием во­ды. Перенос электронов сопряжен с откачкой ионов Н*. Возвращение ионов Н+ через F0 F1 приво­дит к синтезу АТФ

ФОТОСИНТЕЗ И БИОСФЕРА

Основным и практически неиссякаемым источ­ником энергии на поверхности Земли является энергия солнечного излучения, постоянным пото­ком поступающая из космоса благодаря протека­нию термоядерных реакций на ближайшем к нам светиле — Солнце. Как показано на рис. 1, спектр поступающего на Землю солнечного излучения со­ответствует спектру излучения абсолютно черного тела, нагретого до 5900 К. Полный поток солнечно­го излучения (измеренный за пределами земной ат­мосферы), приходящийся на единицу поверхности, нормальной к направлению на Солнце, близок к 1400 Вт/м2 . Значительная часть этой энергии прихо­дится на область видимого и ближнего инфракрас­ного излучения (0,3 - 1,0 мкм) — фотосинтетически активную радиацию, эффективно поглощаемую пигментами, участвующими в фотосинтезе расте­ний и фотосинтезирующих бактерий.

Какая бы часть спектра этого излучения ни по­глощалась на Земле, это в конечном счете приводит главным образом к нагреванию поверхности плане­ты и ее атмосферы, или же энергия вновь испуска­ется в космическое пространство. Какова же роль фотосинтеза, фотосинтезирующих организмов в улавливании этой энергии? Почему утверждают, что фотосинтез - это энергетическая основа биоло­гических процессов, энергетический движитель развития биосферы? Почему говорят как о фотоавтотрофии (то есть о питании за счет света) биосфе­ры в целом, так и о фотоавтотрофии человечества, а жизнь на Земле называют космическим явлением прежде всего потому, что она существует и развивает­ся за счет энергии, поступающей к нам из космоса — от ближайшего космического светила?

Как известно, фотосинтез растений заключается в преобразовании и запасании солнечной энергии, в результате которого из простых веществ — угле­кислоты и воды — синтезируются углеводы и выде­ляется молекулярный кислород. В общем виде этот процесс можно описать следующим уравнением (рис. 2).

Несмотря на кажущуюся простоту фотосинтеза, на Земле, пожалуй, нет более удивительного про­цесса, который смог бы в такой степени преобразо­вать нашу планету.

ЗАПАСАНИЕ ЭНЕРГИИ

Как следует из уравнения (рис. 2), на каждый ас­симилированный в процессе фотосинтеза моль уг­лекислоты запасается 114 ккал энергии. В чем же состоит достоинство запасания солнечной энергии растениями по сравнению с неорганизованной ("нефотосинтезирующей") системой? Любое ве­щество, поглощая квант солнечной энергии, пере­ходит в возбужденное состояние, что уже можно рассматривать как преобразование энергии элект­ромагнитного излучения и ее запасание. Однако энергия электронного возбуждения очень быстро (за 10-13 – 10-11 сек) растрачивается на тепло или же вновь излучается в пространство (для сложных ор­ганических молекул типа хлорофилла этот процесс происходит за 10-8 – 10-9 сек) и, следовательно, в ви­де возбужденных состояний энергия света может быть запасена лишь на незначительные доли секун­ды. В результате же фотосинтеза энергия поглощен­ного кванта света (или, лучше сказать, часть этой энергии) запасается надолго: от минут и часов до сотен и даже миллионов лет (как это имело место, например, при образовании горючих ископаемых — нефти, природного газа, каменного угля, торфа в результате разложения наземных и морских расте­ний или животных). Но этим, конечно, не исчерпы­вается специфика фотосинтеза в использовании солнечной энергии. Так, формирование горных ледников и озер тоже происходит за счет энергии Солнца, идущей на испарение воды, и при этом то­же происходит запасание солнечной энергии на длительное время. В связи с этим говорят об еще од­ном преимуществе фотосинтеза: запасание солнеч­ной энергии происходит в очень удобной для биоло­гического использования форме - молекулярной, в виде богатых энергией связей, в основном в сахарах и их производных, а также в аминокислотах, белках, жирах, которые в любой необходимый момент мо­гут быть использованы растениями или "съевши­ми" их нефотосинтезирующими (гетеротрофными) организмами для покрытия своих энергетических потребностей, для биосинтеза собственных высо­комолекулярных соединений.

Рис. 1. Интенсивность падающего на Землю солнечного излучения (Нl ) в зависимости от длины волны. Заштрихованные области соответствуют ненаблюдаемым на уровне моря участкам спектра из-за их поглощения указан­ными компонентами атмосферы. 1 - Солнечное излучение за границей атмосферы, 2 - солнечное излучение на уровне моря, 3 - излучение абсолютно черного тела при 5900 К. (Справочник по геофизике и космическому про­странству. Под ред. С.Л. Валлея и Мак Гроу-Хилла, Нью-Йорк, 1965).

Фотосинтез

Рис. 2. Уравнение фотосинтеза кислородвыделяющих фотосинтезирующих организмов.

Масштабы фотосинтетического преобразова­ния и запасания солнечной энергии огромны: каж­дый год за счет фотосинтеза на Земле образуется около 200 млрд. тонн биомассы, что эквивалентно энергии, равной 3 • 1021 Дж или 7,2 • 1020 кал. При этом необходимо иметь в виду, что фотосинтез — единственный биологический процесс, протекаю­щий с запасанием (с увеличением) свободной энер­гии. Все остальные процессы, как в растениях, так и в животных, проходят за счет химической энергии, накапливаемой в фотосинтезирующих организмах в результате преобразования поглощенного солнеч­ного света. Следовательно, практически вся живая материя на Земле представляет собой прямой или отдаленный результат фотосинтетической деятель­ности растений, которые являются посредниками между неиссякаемым источником энергии — Солн­цем и всем живым миром нашей планеты. Именно поэтому мы говорим о фотоавтотрофии биосферы Земли, в том числе и о фотоавтотрофии человече­ства. Население Земли ежегодно потребляет около 1 млрд. тонн продуктов питания, что соответствует 15 • 1018 Дж, если считать численность населения равной 5 млрд. человек. Следовательно, человечест­во потребляет в виде органических веществ лишь около 0,5% всей энергии, запасаемой в результате фотосинтеза. Общее потребление энергии в миро­вом масштабе составляет 3 — 4 • 1020 Дж в год, то есть около 10% всей энергии, запасаемой за год благода­ря фотосинтезу. Разведанные запасы ископаемого топлива (нефти, газа, угля, торфа) по запасенной в них энергии соответствуют продукции фотосинте­тической деятельности на Земле приблизительно за 100 лет, что эквивалентно также энергии, которая содержится во всей биомассе, находящейся в насто­ящее время на нашей планете.

АССИМИЛЯЦИЯ ДВУОКИСИ УГЛЕРОДА

Ежегодная ассимиляция углекислого газа на Земле в результате фотосинтеза составляет около 260 млрд. тонн, что эквивалентно 7,8 • 10'° тонн уг­лерода, и это связывание углерода компенсируется выделением практически такого же количества СО2 в результате дыхания нефотосинтезирующих орга­низмов. Количество СО2 , вовлекаемого в цикл "фо­тосинтез—дыхание", составляет около 10% массы углекислого газа в атмосфере, которая в 1980 году была эквивалентна 7,1 • 10" тонн углерода. В то же время до 1860 года атмосфера содержала лишь 6,1 • 10й тонн углерода в виде СО2 , и это 15%-ное увеличение СО2 в атмосфере связывают прежде все­го с появлением дополнительного источника СО2 вследствие интенсивного сжигания ископаемого топлива, которое эквивалентно в настоящее время 5 • 109 тонн углерода в год и увеличивается в среднем на 4,3% в год.

Необходимо отметить, что значительно большая часть углерода содержится в виде карбонатов в оса­дочных породах - 5,5 • 1016 тонн, в живых (в основ­ном леса) и отмерших организмах - 3,5 • 1012 тонн. В мировом океане содержится в 60 раз больше угле­рода, чем в атмосфере (3,5 • 1013 тонн), что связано с очень высокой растворимостью СО2 в воде и обра­зованием Н2 СО3 и, следовательно, можно было бы предположить, что незначительное дополнитель­ное поступление СО2 в результате сжигания иско­паемого топлива, которое составляет менее одного процента в год от содержания углекислого газа в ат­мосфере, не должно приводить к заметному увели­чению содержания СО2 в атмосфере. Однако в дей­ствительности лишь в верхних слоях океана, содержащих лишь 1,5% всего углерода, растворен­ного в воде, обмен углерода с атмосферой осуще­ствляется достаточно быстро (за 6 - 7 лет), тогда как для установления такого равновесия с глубинными слоями океана требуется несколько тысячелетий. Вследствие этого сжигание ископаемого топлива в промышленном масштабе привело к увеличению содержания СО2 в атмосфере с 0,027% (в доиндустриальную эпоху) до 0,034% в настоящее время. Рас­четы показывают, что к 2035 году содержание угле­кислого газа в атмосфере удвоится, то есть будет составлять около 0,06%. Основным последствием этого, как считается, будет глобальное потепление климата, обусловленное так называемым "теплич­ным эффектом", связанным с тем, что углекислый


29-04-2015, 05:18


Страницы: 1 2 3 4
Разделы сайта