Однако здесь возникает ряд проблем вычислительного порядка, связанных с увеличением размерности задачи оценивания, что ведет к значительному увеличению объема вычислений, и как следствие - к неустойчивости машинных алгоритмов.
В таких условиях чрезвычайно важное, если не решающее, значение приобретает исследование возможностей сведения исходной задачи совместной идентификации, имеющей большую размерность, к задачам меньшей размерности, т.е. возможностей декомпозиции задачи оценивания расширенного вектора состояния (сведение ее к задачам меньшей размерности).
Поэтому в данной работе в качестве одного из путей построения алгоритма оценивания в СМСН ДПЛА предлагается сначала провести идентификацию параметров , , и оценить параметры , , , a затем, уже с учетом этой информации, осуществить идентификацию параметров , , . В свете этих предложений идентификацию параметров целесообразно осуществлять в два этапа. Таким образом, идея этого метода интересна, так как позволяет существенно упростить алгоритмы обработки информации СМСН ДПЛА. Следуя намеченной схеме, решение задач и нелинейной фильтрации при поиске оценок параметров относительного дв ижения ЛА ищется с помощью модифи цированного нелинейного фильтра.
При решении практических задач идентификации возникает проблема обеспечения устойчивости процессов обработки информации. В некоторых случаях реальные ошибки оценивания могут во много раз превосходить расчетные значения, характеризуемые матрицей ковариации ошибок оценивания. Наиболее часто встречающимся источником расходимости являются неточности моделей состояния и наблюдения, неточность задания характеристик шумов и т.д. Так как синтез алгоритмов обычно проводится в условиях априорной неопределенности, то для ее преодоления используют различные адаптивные алгоритмы.
В данной работе с целью устранения в определенных пределах незнания о характеристиках шумов измерений используется идея J-адаптивного фильтра . Такое название он получил по первой букве фамилии автора “J” предложивший алгоритм J-адаптивного фильтра для дискретных систем в работе [7].
В работе [7] J-адаптивный фильтр использован для оценивания параметров движения баллистического объекта: положения и скорости, а также для оценивания вектора аэродинамических параметров (коэффициентов лобового сопротивления и под ъемной силы) или составляющих вектора немоделируемых ускорений по осям декартовой СК. Как указано в этой работе, J- адаптивный фильтр идентифицирует 99% немоделируемых ускорений.
Пусть динамика системы описывается следующим нелинейным уравнением:
(18) |
В дискретной форме это уравнение (с точностью до членов второго порядка) будет иметь вид [7] :
, | (19) |
где вектор состояния размерности , непрерывная векторная функция, которая по крайней мере дважды дифференцируема по своим аргументам,
, | (20) |
матрица Якоби вектор-функции , a отражает погрешность дискретизации и неопределенности моделирования в уравнении динамики. Предполагается, что является белой гауссовской последовательностью с нулевым средним и матрицей ковариации :
, | (21) |
где дельта-функция Кронекера.
Начальное значение вектора состояния принимается гауссовской случа йной переменной с известными средним значением и матрицей ковариации вида:
(22) |
Процесс измерения описывается уравнением:
, | (23) |
, |
где вектор погрешностей измерений типа белой последовательности с нулевым средним и матрицей ковариации , вектор размерности , непрерывная векторная функция, дважды дифференцируемая по своим аргументам.
Тогда обобщенный калмановский фильтр описывается следующими уравне ниями:
, | (24) |
, | (25) |
где весовая матрица (матрица коэффициентов усиления фильтра).
Уравнения экстраполяции матрицы ковариации:
, | (26) |
. |
Уравнения коррекции матрицы ковариации:
, | (27) |
. |
Далее на основе [8] рассмотрим метод получения J-адаптивного нелинейного фильтра .
Предполагается, что в уравнения состояния и измерений входят одни и те же определенные параметры, величины которых известны неточно. Такие параметры можно представить как случайны е переменн ые с заранее известной статистикой , При этом предполагается, что , , , некоррелированы, и матрица ковариации остается неизменной на всем временном интервале процесса оценивания.
При синтезе фильтра в вектор состояния включается вектор . Вводя для вектора параметров уравнения вида
, | (28) |
можно получить расширенную систему уравнений с вектором состояния:
, | (29) |
и уравнениями измерений:
. | (30) |
В этом случае динамические уравнения расширенной системы запишутся в виде
, | (31) |
. |
Применяя к этой системе нелинейный фильтр можно получить оценки как вектора , так и вектора .
Далее, используя метод изложенный в работе [9] , легко получить уравнения J- адаптивного фильтра. Уравнения J-адаптивного фильтра получаются [9] с помощью расширения вектора состояния путем присоединения переменной , записи расширенного фильтра в виде отдельных уравнений и отбрасывания уравнений для ковариационной матрицы .
В соответствии с этим методом матрица ковариации ошибок оценивания представляется в виде:
, | (32) |
где
, | (33) |
. |
Матрицу можно представить в виде
, где |
(34) |
, , |
, | (35) |
где
, | (36) |
, | |
Окончательный вид уравнений J-адаптивного фильтра будет следующий:
, | (37) |
, | |
, | |
, | |
, | |
. |
Заключение
В данной работе решена задача оценки параметров относительного движения ЛА в групповом полете. Точное определение параметров , , , и особенно , , , необходимо для синтеза алгоритма управления полетом ЛА в группе.
Задача была рассмотрена при полном составе измерений параметров относительного движения ЛА: углах визирования, угловой скорости линии визирования, дальности и скорости изменения дальности.
Ключевым вопросом в решении этой задачи стала разработка математической модели относительного движения ЛА.
Ввиду того, что измерения содержат случайные ошибки. алгоритм оценивания должен обеспечивать снижение ошибок и снижение их влияние точность оценки, а следовательно и на качество управления строем БЛА. Следовательно, в алгоритме было необходимо провести фильтрацию ошибок измерений.
Эта задача была решена посредством применения J-адаптивного фильтра.
Список литературы
Терентьев В.М. Разработка и исследование алгоритмов управления и обработки информации для СМСН БЛА. Доклад на школе-семинаре ЦАГИ по проблемам управления ЛА г. Жуковский 25.02-2.03 1991 г.
Тарасов В.Г. Межсамолетная навигация. М.: Машиностроение, 1980. 184 с.
Степанов О.А. Применение теории нелинейной фильтрации в задачах обработки навигационной информации. М. ЦНИИ "Электроприбор", 2000.
Горбатенко С.А., Макашов Э.М. и др. Механика полетов. Инженерный справочник. М.: Машиностроение, 1969, 420 с.
Эйкхоф П. Основы идентификации систем управления. М.: Мир, 1975.
Стратонович Р.Л. Условные марковские процессы и их применение к теории оптимального управления. М.: Издательство МГУ, 1966.
Вопросы управления космическими аппаратами. М.:Мир, 1975.
Jazwinski A.H., Stochastic processes and filtering theory, NY.: Academic Press, 1970.
Jazwinski A.H. Nonlinear and adaptive estimation in reentry, AIAA Paper No. 72-874.
29-04-2015, 01:59