Предвидение и прогнозирование

Содержание

1. Основные понятия

2. Предвидение случайных событий

3. Примеры расчетов на будущее

4. Методы прогнозирования

Библиографический список

1. Основные понятия

Выбор решения во многом определяется теми условиями, той предполагаемой обстановкой, в которой решение будет проводиться в жизнь. Поэтому менеджер не может сделать буквально ни шагу, не заглядывая в завтра. Он должен получить представление о том, как пойдут дела у предприятия, какой результат даст бизнес, как поведет себя рынок. Можно ли, однако, сделать достоверные предсказания?

Около 80 лет назад одна газета распространила любопытную анкету. Читателям было предложено назвать семь чудес света того времени. Для облегчения работы газета привела список из наиболее значительных достижений науки и техники. Вот некоторые из них в алфавитном порядке:

автомобиль, анестезия (обезболивание), антидифтеритная сыворотка, антисептика, аэроплан, Эйфелева башня, велосипед, динамо-машина, дирижабль, кинематограф, микроскоп, мелинит (взрывчатое вещество), открытие полюсов, паровоз, пересадка органов, пишущая машинка, подводная лодка, радий, ротационная печатная машина, Симплонский туннель (в Альпах), скафандр, Суэцкий канал, счетная машина (арифмометр), телеграф без проводов, телескоп, телефон, фонограф, фотография, химический анализ, g-лучи (лучи Рентгена), холодильник, хронометр, электрическая печь и т. д.

Большинством голосов были установлены следующие семь чудес света: аэроплан, антидифтеритная сыворотка, динамо-машина, радий, паровоз, пересадка органов, телеграф без проводов.

Попробуй мы сегодня составить подобный список чудес, он выглядел бы совершенно по-иному. В нем были бы космические ракеты и атомные электростанции, суда на воздушной подушке и цветное телевидение, квантовые генераторы-лазеры, искусственное сердце и искусственный разум. И многое другое, о чем в начале века никто даже и не подозревал.

Сменились всего одно-два поколения, живы еще те, кто с удивлением и восторгом взирал на все эти чудеса. И как переменился мир! Никто уже не считает чудом аэроплан или радий. Что касается паровоза, то он просто устарел. Теперь это кажется смешным, но какие-нибудь 150 лет назад противники создания паровоза всерьез утверждали, что всякого, кто решится подвергнуть себя воздействию невиданной ужасающей скорости нового вида транспорта – 40 километров в час, ждет неминуемая смерть от удушья.

Новое качество движения казалось непреодолимым.

Всего 100 лет тому назад некоторые выдающиеся английские специалисты заявляли, что электрическая лампочка Эдисона не заслуживает «внимания людей науки и практики» и что «распределение электрической энергии для освещения – это глупейшая выдумка».

Опять новое качество, и снова – тяжелый барьер.

Кстати, и сам Эдисон тоже вначале не мог оторваться от привычных представлений. Его первая неудачная нить накаливания была не металлической, как теперь, а сделанной из угля. Переход от свечи к электрической лампочке требовал своего барьера.

Известный английский писатель и ученый Артур Кларк составил любопытный список осуществленных достижений и идей человечества. Вот он в несколько измененном, осовремененном виде:

Автомобили Рентгеновские лучи

Самолеты Ядерная энергия

Вертолет Радио

Паровые двигатели Телевидение

Подводные лодки Электроника

Космические корабли Фотография

Телефон Звукозапись

Роботы

Теория относительности

Транзисторы

Лазеры

Определение химического

состава небесных тел


Соль этого списка в том, что все помещенное в левой колонке было заранее предсказано, а то, что в правой, появилось совершенно неожиданно и не предвиделось.

Автор списка утверждает: « Все, что теоретически возможно, обязательно будет осуществлено на практике, как бы ни были велики теоретические трудности,– нужно только очень сильно захотеть». Поэтому в левой колонке нашего списка должны появиться: термоядерный реактор, добывающий энергию прямо из воды морей и океанов; электрический автомобиль, работающий на небольших по весу, но очень емких источниках тока, и многое-многое другое.

А вот правую колонку дополнять сегодня нельзя. Ведь все то, что в ней указано, получается неожиданно и точно предсказано быть не может.

Итак, заглянуть и будущее совсем не легко. Но тем не менее ежедневно передают прогнозы погоды, планируется будущий урожай пшеницы, мы знаем, в каком году закончится строительство завода. Наряду со всевозможными лже-предсказаниями, гаданиями и пророчествами существуют верные, основанные на научных методах пророческие высказывания. предвидение предсказание прогнозирование

Высказывания о будущем могут существовать в форме предвидения, предсказания, прогнозирования.

Предвидение – это широкое, обоснованное, носящее достоверный характер суждение о будущем. Можно предвидеть, например, полеты человека к планетам Солнечной системы, победу медицины над различными заболеваниями, овладение термоядерной энергией.

Предсказание очень похоже на предвидение, оно тоже достоверно. Но это уже не общее вполне конкретное суждение о будущем с более точным указанием, что и когда состоится. На пример, предсказывали, что мы научимся добывать энергию из воды в 80-х годах нашего столетия или что в это же время состоится высадка человека на Марсе.

В последнее время все чаще говорят еще одной форме суждения о будущем – о прогнозировании. Что это такое?

Прогнозирование – не просто высказывание о завтрашнем дне. Это исследование, пристальное изучение будущего какого-либо вполне определенного, интересующего нас дела. Например, существует прогнозирование развития промышленности, сельского хозяйства, транспорта, связи.

Прогнозирование, и это самое важное, не ограничиваясь изучением будущего, способствует воздействию на него в нужном направлении. Мы стремимся не только узнать, каким может стать, скажем, транспорт через пять лет, но главное – выяснить, что нужно сделать, чтобы он стал как можно лучше, эффективнее. Именно прогнозирование помогает правильно разрабатывать планы, составлять бюджет, определять перспективу бизнеса.

Прогнозирование может быть финансово-экономическим, научно-техническим, медико-биологическим – в зависимости от того, какие задачи оно решает, будущее каких явлений оно просматривает. Но независимо от решаемых с помощью прогнозирования задач самое главное и интересное качество, которое будет нас интересовать способность заглядывать в завтрашний день, проникать в будущее. Каким же образом, с помощью какого «механизма» это можно сделать?

2. Предвидение случайных событий

Подбросим обычную монету и попробуем угадать, какой стороной кверху она сейчас упадет. Монета нам хорошо знакома, мы не раз держали ее в руках, можно точно определить ее размеры и вес, вычертить траекторию полета при подбрасывании. Но вот предсказать, что окажется сверху – «орел» или «решка», – нам не удастся. Огорчаться, впрочем, не стоит. Не «потянет» эту нехитрую задачу и целый коллектив сильных математиков мира, вооруженных наисовременнейшей техникой. Дело в том, что наша монета находится во власти случая.

Случаем мы называем то, что в сходных условиях происходит неодинаково, причем заранее нельзя предугадать, что будет в этот раз. Спланировать каждый данный случай невозможно – мы видим это на примере монеты. А что уж говорить о более сложных явлениях! С утра до вечера, изо дня в день мы сталкиваемся с проявлениями случая: в значительной мере случайна погода и спрос на товар, длина очереди в автобус, выход из строя оборудования, простуда, курс акций и длина юбки в предстоящем сезоне. От случая во многом зависит удача предпринимателя и процветание фирмы.

Главный источник случайностей – неисчерпаемость мира, его бесконечная сложность и разнообразие. Возьмем, к примеру, ту монету, которую мы подбрасывали. Ее «летные» качества зависят от степени однородности металла, наличия и распределения в нем инородных примесей и т. п. Монету подбрасывает человек или механизм, изготовленный человеком. Значит, сила и характер броска зависят от качества этого человека, в свою очередь определяемых его анатомией, физиологией, историей развития и т. п. И здесь случаю явно остается много места. Об огромном числе возможных сочетаний событий окружающего нас мира говорит следующий простой, но впечатляющий пример. Как вы думаете, сколько может быть способов расположения 10 шаров по 10 ящикам? Тысяча? Сто тысяч? Не угадали – это число с десятью нулями. И если бы нам захотелось перечислить все возможные комбинации, понадобилось бы написать несколько сотен тысяч больших томов!

Еще одна, пожалуй, наиболее глубокая причина, порождающая случайности, – так называемый принцип (или соотношение) неопределенностей, открытый в 1927 году немецким физиком Вернером Гейзенбергом. Суть этого принципа заключается в том, что, зная положение в пространстве мельчайшей частицы материи – электрона, мы никакими способами не можем точно определить направление его дальнейшего движения. Видно, здесь, в недрах материи, и находятся глубинные истоки случая. Истребить случай, избавиться от него невозможно. Но, может быть, есть другие пути?

В 1829 году бельгийский ученый А. Кетле составил поразительную таблицу (табл. 1). Полученная в результате обобщения огромного статистического материала, таблица эта потрясла самого автора: цифры повторялись из года в год с удивительным постоянством. Кетле писал: «Печальное свойство рода человеческого... Мы можем заранее исчислить, сколько людей запятнают руки кровью себе подобных, сколько будет подделывателей, сколько отравителей...»

Таблица 1

События, обстоятельства, факты

Год

1826

1827

1828

1829

1830

1831

Убийств вообще

241

234

227

231

205

266

Ружье и пистолет

55

64

60

61

57

88

Сабля, шпага, стилет, кинжал и т. п.

15

7

8

7

12

30

Нож

39

40

34

46

44

34

Палка, трость и т. п.

23

28

31

24

12

21

Камень

20

20

21

21

И

9

Орудия режущие, колющие и ушибающие

35

40

42

45

46

49

Удушения

2

5

2

2

2

4

Сбрасывание и утопление

6

16

6

1

4

3

Удар ногой и кулаком

28

12

21

23

17

26

Огонь

-

1

-

1

-

-

Убийство от неизвестных орудий

17

1

2

2

2


Определенное постоянство числа фактов свойственно, конечно, не только «удушениям и утоплениям». Вот еще одна таблица, на этот раз полученная на основании статистических данных по городу Берлину в начале нашего века (табл. 2).

Таблица 2

События, обстоятельства, факты

Год

1900

1901

1902

Несчастные случаи в воскресенье

5219

5316

5250

Несчастные случаи в понедельник

7612

7446

7702

Вдовы, в третий раз вступившие в брак

23

37

26

Вдовы, в четвертый раз вступившие в брак

3

3

4

Переезды на другую квартиру в октябре

125627

133937

134 202

Переезды на другую квартиру в ноябре

45210

48493

46512

Извозчики, отъехавшие с седоками от Потсдамского вокзала

5205

5738

5945

Извозчики, отъехавшие с седоками от Герлицкого вокзала

1352

1306

1341

Что может, казалось бы, быть дальше от каких-либо правил, чем вступление в брак? Случайна обычно сама встреча будущих супругов. От многих трудноуловимых обстоятельств зависит, решат ли они связать свои жизни, – без раздумий и сомнений дело, как правило, не обходится. Внешность, характер – все тут имеет значение. Однако, как видно из таблицы, даже в таком событии, как брак, явно просматриваются железные регулярности, непреложные правила.

Закономерности в случайных явлениях были издавна подмечены и использованы людьми, в частности, для предсказания погоды по так называемым народным приметам. Существует, например, примета, по которой в первых числах августа – в Ильин день – увеличивается количество гроз («Илья Пророк в золотой колеснице по небу катается»). Метеорологи в результате почти сорокалетних наблюдений составили любопытную таблицу (табл. 3).

Таблица 3

Дата

31.VII

1.VIII

2.VIII

3.VIII

4.VIII

5.VIII

Число гроз

6

19

14

19

8

5

Таблица не оставляет сомнения в точности народных примет: в первых числах августа количество гроз действительно резко увеличивается. Так рождались безошибочные предсказания.

Одним из первых ученых, отметивших закономерности в массовых случайных явлениях был великий французский ученый П. Лаплас (кстати, А. Кетле был его учеником). Лаплас просмотрел метрические книги города Парижа с записями о рождении детей с 1745 года (в этом году впервые начали отмечать в книгах пол младенца) по 1884 год. За это время было зарегистрировано 393 386 мальчиков и 377 555 девочек. Таким образом, на каждые 25 мальчиков приходилось примерно по 24 девочки. Между тем Лаплас знал, что во Франции, а также в большинстве стран Европы и Америки это отношение составляет 22 и 21. Предоставим поэтому повсюду слово самому Лапласу: «Когда я стал размышлять об этом, то мне показалось, что замеченная разница зависит от того, что родители из деревни и провинции оставляют при себе мальчиков (мужчина в хозяйстве – более ценная рабочая сила), а в приют для подкидышей отправляют девочек». Изучив списки парижских детских приютов, Лаплас убедился в справедливости своего предположения: в случайном соотношении полов новорожденных просматривалась железная закономерность.

Итак, в сложных запутанных массовых явлениях, зависящих от необозримого множества случайных причин, случайность как бы перестала быть случайной. Неопределенность уступает место определенности. Вывод этот настолько ошеломлял, что знаменитый статистик К. Пирсон не поленился бросить монету 24 000 раз и... получил 12012 «гербов», что дает частоту, весы близкую к 0,5. Закономерность и здесь оказалась вполне определенной.

Произведем и мы не менее поучительный эксперимент.

Предложите вашему знакомому придумать свой личный шифр – каждая буква алфавита заменяется каким-либо «хитрым» значком: точкой, кружочком, треугольником и т. п. – и написать этим, известным только ему одному, шифром письмо вам на одной-двух страницах. Ручаюсь за эффект после того, как вы через некоторое время огласите расшифрованный текст письма.

Секрет этого «фокуса» в том, что в случайном, казалось бы, наборе букв «шифровки» проявляется строгая регулярность: частота появления каждой из букв алфавита в тексте является практически постоянной. Приведем эти данные (табл. 4).

Таблица 4

Относительная частота появления в тексте букв русского алфавита

Буква

Частота

Буква

Частота

Буква

Частота

а

0,075

К

0,034

Ф

0,002

б

0,017

л

0,042

X

0,011

в

0,046

м

0,031

ц

0,005

г

0,016

и

0,065

ч

0,015

д

0,030

о

0,110

ш

0,007

е, ё

0,087

II

0,028

щ

0,004

ж

0,009

р

0,048

ь, ъ

0,017




10-09-2015, 16:26
Страницы: 1 2 3 4 5
Разделы сайта