Предвидение и прогнозирование

без всякого расчета отвечаем – три. (Правда, мы вряд ли сможем сообразить без расчетов, что для трех номеров вероятность выше почти в 20 раз!)

Вот еще несколько примеров, когда интуиция оказывается несостоятельной.

ПРИМЕР 2

Теория вероятностей утверждает, что случайные события, те, которые мы стремимся предсказать, иногда могут происходить довольно часто. Можно произвести такой опыт. Если в вашей учебной группе юношей и девушек примерно поровну, попытайтесь предугадать, кто сейчас первым войдет в помещение: он или она? Сказав «он», вы рискуете ошибиться лишь в половине всех случаев – около 50 % ваших предсказаний обязательно оправдаются.

Зато если вы рискнете предсказать, что оба вошедших подряд окажутся юношами, вероятность резко упадет и окажется равной всего 25 % (по теореме умножения 0,5 х 0,5). Ваше предсказание сбудется лишь в одном случае из четырех.

Существует, однако, нехитрый способ добиться значительного увеличения числа «вещих» предсказаний. Для этого нужно только загадать, кто войдет, несколько по-иному: если вы будете утверждать, что юношей окажется не меньше, чем один из нескольких вошедших подряд, то это ваше предсказание имеет значительно больше шансов на успех. Расчет, сделанный по правилам теории вероятностей, показывает, что вероятность увидеть хотя бы одного юношу из пяти вошедших равна 93 %. Делая такое предсказание, вы практически ничем не рискуете – оно сбудется наверняка.

С высокой точностью сбудется также и предсказание прихода не менее двух юношей (или, если хотите, девушек – это в подобных задачах не имеет значения) из пяти вошедших. Вероятность этого события равна 81 %. Тоже высокая вероятность.

И даже предсказывая, что из пяти человек не менее трех окажутся лицами названного вами пола, вы все еще сохраняете шансы прослыть пророком – вероятность 50 %.

Приведем для разных случаев маленькую, но полезную табличку, взятую из теории вероятностей (табл. 5).

Таблица 5

Вероятности прихода предсказанного количества мужчин или женщин (в %)

Предсказанное количество мужчин или женщин

Количество вошедших

1

2

3

4

5

Не менее 1

50

75

88

94

97

Не менее 2

0

25

50

69

81

Не менее 3

0

0

12

31

50

Не менее 4

0

0

0

6

19

Не менее 5

0

0

0

0

3

Посмотрев табличку, вы можете уверенно предсказать, например, что из пяти вошедших будет не менее двух мужчин (или женщин). Вероятность этого события очень большая – 81 %. В восьми случаях из десяти ваше предсказание сбудется.

Этот пример поможет нам приоткрыть один из профессиональных секретов гадалок и прочих прорицателей. Предположим, гадалка предсказывает пять каких-то событий, которые могут равно как произойти, так и не произойти – точно так же, как в одинаковой степени могут войти мужчина и женщина. Такими предсказаниями могут быть, например, «приятная встреча», «лихой недруг», «дальняя дорога», «получение известия», «нечаянная радость» и т. п.

Вероятность того, что сбудутся все пять предсказаний, как показывает расчет, исключительно мала – всего 3,1 %. Но легковерному человеку вполне достаточно, если состоится хотя бы не менее двух-трех из них. Заметьте, не менее – это может быть и два, и три, и четыре, и даже пять. А такое количество пророчеств – мы уже знаем – происходит с высокой вероятностью – 81 %. Поэтому-то часть сделанных гадалкой предсказаний обычно и сбывается. А легковерные люди и не подозревают, что приобщились к «таинствам» теории вероятностей.

Помимо математической стороны дела есть и не менее важные причины психологического происхождения. Вот некоторые из них. Прорицатели, как правило, люди наблюдательные. Вороша карты или перемешивая кофейную гущу, они нет-нет да и ненароком бросят взгляд на доверчивого клиента. Не болезненный ли у него вид («лихой недуг»), не горит ли его взор лихорадочным ожиданием («нечаянная радость»)? Богатый профессиональный опыт подсказывает гадалке, что, кому и как говорить. Не последнюю роль играет и чутье, интуиция. Предсказатели издавна эксплуатируют и то, что человеку свойственно принимать желаемое за действительное. Оракул так формулирует свое откровение, что понимать его можно самым различным образом – как хочется «заказчику». Вспомним предсказание, сделанное дельфийским оракулом Крезу: «Если ты нападешь на персов, великое государство погибнет». Очень уж хотелось Крезу разрушить чужое государство. Вот он и поверил. А государство-то погибло его собственное.

Из множества сделанных предсказаний люди запоминают обычно лишь те, что сбылись. Несбывшиеся пророчества в памяти людей, как правило, не сохраняются. Но стоит сбыться нескольким предсказаниям из множества сделанных, как это немедленно поднимается суеверными людьми на щит, обрастает фантастическими подробностями, обретает достоверность «факта».

ПРИМЕР 3

Какова вероятность совпадения дней рождения у любых двух человек, например, из вашей группы в 30 студентов?

На первый взгляд кажется, что поскольку в году 365 дней, то возможность такого совпадения весьма невелика, что-нибудь около = 0,08, или 8 %. Это грубая ошибка. На самом деле следует рассуждать так.

В начале определим вероятность празднования дня рождения какого-нибудь студента в один из дней года. Здесь число всех возможных случаев – это число возможных дней рождения в году – 365. Число интересующих нас случаев – дней рождения одного человека в году – тоже 365. Вероятность празднования дня рождения студентом в один из дней года равна = 1.

Действительно, можно с полной уверенностью сказать, что любой человек за год отпразднует свой день рождения.

Теперь возьмем любого второго студента и найдем вероятность того, что его день рождения не совпадает с днем рождения первого студента. Число всех возможных случаев – возможных дней рождения в году – остается здесь, конечно, тем же – 365, а вот число интересующих нас случаев уменьшится на 1 – ведь тот день, когда праздники могут совпадать, надо выбросить. Итак, вероятность несовпадения дня рождения второго студента с днем рождения

Затем возьмем любого третьего студента вашей группы и найдем подобным же образом, что вероятность несовпадения с днем рождения

И далее для всех студентов группы – в том же духе. Зададим себе такой вопрос: а какова вероятность того, что и у первого, и у второго, и у третьего, и у всех остальных студентов дни рождения не совпадут? Вероятности таких событий находят с помощью умножения.

Вероятность несовпадения дней рождения у


Число сомножителей равно общему числу студентов. В нашем случае таких сомножителей должно быть 30. Стоит перемножить, и получится, что вероятность несовпадения дней рождения у всех тридцати студентов равна 0,29.

А то, что нас интересует,– вероятность совпадения – мы найдем путем вычитания этой цифры из единицы.

Вероятность совпадения дней рождения у любых двух студентов из тридцати равна 1 - 0,29 = 0,71.

Это высокая вероятность. Значит, почти наверняка в любом коллективе, где 30 человек, есть люди, родившиеся в один день.

А как быть тем коллективам, где число людей 10, 40 или 50, т. е. отличается от 30? На этот случай пригодится готовая таблица вероятностей совпадения дней рождения для разных групп людей – от 5 до 100 и более человек (табл. 6). Как она рассчитывается, мы уже знаем.

Таблица 6

Вероятности совпадения дней рождения у различных групп людей

Число человек в группе

Вероятность совпадения дней рождения хотя бы у двух людей группы

5

0,03

10

0,12

15

0,25

20

0,41

21

0,44

22

0,48

23

0,51

24

0,54

25

0,57

30

0,71

40

0,89

50

0,97

60

0,99

70, 80,90, 100 и более

около 1,0


По нашей таблице получается, что, например, если в группе 50 человек, то с вероятностью 0,97, т. е. наверняка можно считать, что дни рождения хотя бы у двух из них совпадут.

Но главный вывод, на который нас наводит история с днями рождения, значительно важнее, чем рассмотренный эпизод: вероятности совпадения любых случайных событий (не только дней рождения) оказываются во много (порой в десятки) раз больше, чем это интуитивно представляется. И то, что мы обычно считаем роковыми совпадениями, на самом деле вполне нормальное явление.

Вот еще примеры, подтверждающие это правило.

ПРИМЕР 4

«Со мной вчера произошло нечто невероятное: я встретил на Невском своего школьного приятеля, с которым не виделся 20 лет». Такая или подобная фраза часто сопровождается нелестной оценкой теории вероятностей: мол, вероятности встретиться не было никакой, и вот на тебе.

Теория вероятностей между тем здесь, как и во многих других случаях, остается на высоте. Тот, кто усомнился в ее правильности, видимо, рассуждал так: в Санкт-Петербурге четыре с лишним миллиона жителей. Один из них - упомянутый школьный товарищ. Вероятность такой встречи равна примерно одной четырехмиллионной, т. е. практически нулю. Чем же, как чудом, можно такую встречу объяснить?

Произведем грубую ориентировочную прикидку с помощью теории вероятностей. Начнем с того, что школьный приятель у вас явно не один. Предположим, что их у вас в Санкт-Петербурге 40 человек. Это сразу же увеличит вероятность встречи в 40 раз, и она станет равна одной стотысячной.

Далее, пока вы прогуливались по Невскому мимо вас прошли по крайней мере тысяча человек. Вероятность выросла в 1000 раз и стала равна одной сотой. Это тоже маловато. Но ведь на Невском вы бывали не один раз, а, скажем, 80. Вот вам вероятность и поднялась до 80 %. Теперь уже надо удивляться не тому, что встреча на Невском состоялась, а тому, что это не произошло раньше.

ПРИМЕР 5

Мой автомобиль снабжен двумя противоугонными приспособлениями – механическим и электрическим. Каждое из них имеет свою вероятность срабатывания. Это не что иное, как надежность, которую можно установить из опыта: сколько раз из ста предохранитель сработает. Так вот, надежность механического приспособления Рм = 0,9, а электрического – Рэ = 0,8.

Известно, что вероятность того, что сработает какое-нибудь одно приспособление (нам совершенно безразлично, какое именно), равна сумме вероятностей Рм и Рэ . Но вероятность второго предохранителя следует здесь учитывать не полностью, а лишь при условии, что первое приспособление не сработает. Мы исходим того, что если раньше срабатывает, скажем, механическое приспособление, то электрическое уже не нужно. Математическая запись, видимо будет понятна:

Рм или Рэ = Рм + Рэ (1-Рм ).

По этой формуле вероятность никогда не будет получаться больше единицы. Подставляя цифры, получим:

Рм или Рэ = 0,9 + 0,8 (1 - 0,9) = 0,98.

Что касается риска угона, то он, как нетрудно сообразить, равен 1 – 0,98 = 0,02.

При таком результате машину довольно спокойно можно оставлять на улице: на сто попыток угона удачных приходится лишь две. В жизни, однако, такое количество попыток угнать вашу машину нереально, и, следовательно, приспособление практически работает надежно.

Совершенно очевидно, что приведенный только что расчет полезно знать не только владельцам индивидуального автотранспорта. Предохранитель от аварии и поломок – важнейший элемент любого современного прибора или механизма.

ПРИМЕР 6

Наше предприятие собирается приобрести электронный прибор. На прибор дается заводская гарантия. Знающие люди предупредили, что в нашем городе сейчас можно приобрести приборы, выпускаемые тремя различными заводами, причем шансы получить прибор завода № 1 равны 0,6, завода № 2 – 0,3, а завода № 3 – 0,2. Какого завода попадется нам прибор, мы не знаем; а между прочим, это далеко не безразлично: вероятности того, что прибор проработает без остановки весь гарантийный срок, для каждого завода различные. На заводе № 1 – 0,9, на заводе № 2 – 0,8, на заводе №3-0,6.

Интересно, какова вероятность, что купленный прибор не придется отправлять обратно на завод? Доказано, что вероятность интересующего нас события равна сумме произведения вероятностей получения прибора того или иного завода на соответствующие вероятности их безотказной работы.

Вероятность работы прибора в течение гарантийного срока = 0,6 х 0,9 + 0,3 х 0,8 + 0,2 х 0,6 = 0,9.

Видимо, прибор покупать стоит: из десяти покупателей лишь одному не повезет.

Формула, по которой мы производили расчет, имеет в теории вероятностей специальное название – формула полной вероятности. Она может пригодиться при определении вероятности безотказной работы в течение заданного времени не только приборов, но и любых других современных машин или механизмов – промышленных автоматов, электронно-вычислительных машин и т. д.

ПРИМЕР 7

Предположим, вы задались целью обязательно решить некую трудную предпринимательскую задачу, например добиться большой прибыли, выхода на зарубежный рынок, высокого качества товаров.

Задачи такие обычно решаются не сразу, для этого нужно сделать несколько попыток. Вам, конечно, интересно, сколько таких попыток потребуется.

Вероятность самого события можно рассчитать по классической формуле. Так, если вас интересует вероятность получения определенной нормы прибыли, нужно количество случаев, при которых эта прибыль была вами получена в прошлом (например, 4 раза), разделить на общее число рассматриваемых случаев (например, 20). Тогда искомая вероятность будет равна = 0,2, или 20 %.

Но нас интересует не эта цифра. Наша цель – определить, сколько нужно сделать попыток п (на языке теории вероятностей – сколько нужно произвести испытаний), чтобы хотя бы одна из них (больше не требуется) гарантированно дала требуемую норму прибыли. Для решения этой задачи теория вероятности предлагает простую формулу:

где Рц есть вероятность, с которой мы хотим добиться своей цели – получить нужную норму прибыли, а Рс вероятность самого события – получения требуемой прибыли.

По данной формуле рассчитана простая, но весьма полезная таблица, позволяющая ответить на вопрос, с которого мы начали (табл. 7).

Таблица 7

Количество попыток для достижения цели




10-09-2015, 16:26
Страницы: 1 2 3 4 5
Разделы сайта






Вероятность события, %

Вероятность с которой мы хотим добиться цели, %

5

10

20

30

40

50

60

70

80

90

Около 100

5

1

2

4

7

10

14

18

24

31

45

76

10

1

2

3

4

7

8

11

15

22

37

20

-

-

1

2

2

3

4

6

7

10

17

30

1

1

2

3

3

5

6

11

40

-

1

1

2

2

3