Оптимальные и адаптивные системы

- корни вещественные




Сумма двух экспонент представляет собой:



Если , то корни комплексно-сопряженные и решение будет представлять собой периодическую функцию. В реальной системе, переключений не более 5 - 6.


  1. Метод поверхности переключений


Данный метод позволяет найти управление функций переменной состояния для случая когда оптимальное управление носит релейный характер


.


Таким образом этот метод можно применять при решении задач оптимального быстродействия, для объекта с аддитивным управлением


,


.


Суть метода заключается в том, чтобы во всём пространстве состояний выделить точки, где происходит смена знака управления и объединить их в общую поверхность переключений.


,


- поверхность переключений


.


Закон управления будет иметь следующий вид


.


Для формирования поверхности переключений удобнее рассматривать переход из произвольной начальной точки в начало координат


.

Если конечная точка не совпадает с началом координат, то необходимо выбрать новые переменные, для которых это условие будет справедливо.

Имеем объект вида


.


Рассматриваем переход , с критерием оптимальности


.


Этот критерий позволяет найти закон управления такого вида


,


с неизвестным , начальные условия нам также неизвестны.

Рассматриваем переход:


Метод обратного времени

(метод попятного движения)


Этот метод позволяет определить поверхности переключений.

Суть метода заключается в том, что начальная и конечная точки меняются местами, при этом вместо двух совокупностей начальных условий остаётся одна для .

Каждая из этих траекторий будет оптимальна. Сначала находим точки, где управление меняет знак и объединяем их в поверхность, а затем направление движения меняем на противоположное.



Пример


Передаточная функция объекта имеет вид


.


Критерий оптимальности быстродействия



Ограничение на управление .


Рассмотрим переход


.


1)

,

2)

.

3)


оптимальное управление будет иметь релейный характер


.


4) Перейдём в обратное время (т.е. ). В обратном времени задача будет иметь такой вид


.


5) Рассмотрим два случая:


Получим уравнения замкнутой системы

.


Воспользуемся методом непосредственного интегрирования, получим зависимость от и поскольку -, то имеем


,


т.к. начальные и конечные точки поменяли местами, то , получим


, (*)


аналогично



подставив (*), получим

,


отсюда


.


Построим получившееся и по методу фазовой плоскости определим направление





Применив метод непосредственного интегрирования, получим:


,


,


.


Функция будет иметь вид:


Изменив направление

точка смены знака

(точка переключения)

Общее аналитическое выражение:

.


Уравнение поверхности:


.


Оптимальный закон управления:


,


подставив уравнение поверхности, получим:


.


2.5. Субоптимальные системы


Субоптимальные системы - это системы близкие по свойствам к оптимальным



- характеризуется критерием оптимальности.



- абсолютная погрешность.


- относительная погрешность.


Субоптимальным называют процесс близкий к оптимальному с заданной точностью.

Субоптимальная система - система где есть хоть один субоптимальный процесс.


Субоптимальные системы получаются в следующих случаях:


  1. при аппроксимации поверхности переключений (с помощью кусочно-линейной аппроксимации, аппроксимация с помощью сплайнов);



    при в субоптимальной системе будет возникать оптимальный процесс.


  2. ограничение рабочей области пространства состояний;





3.АДАПТИВНЫЕ СИСТЕМЫ


3.1.Основные понятия


Адаптивными системами называют такие системы, в которых параметры регулятора меняются вслед за изменением параметров объекта, таким образом, чтобы поведение системы в целом оставалось неизменным и соответствовало желаемому:


,


.


Существует два направления в теории адаптивных систем:


  1. адаптивные системы с эталонной моделью (АСЭМ);


  2. адаптивные системы с идентификатором (АСИ).


  1. Адаптивные системы с идентификатором


Идентификатор - устройство оценки параметров объекта (оценка парамет­ров должна осуществляться в реальном времени).



АР - адаптивный регулятор

ОУ - объект управления

U - идентификатор


Часть, которая выделена пунктиром, может быть реализована в цифровом виде.


Рис1. Функциональная схема АСИ


V, U, X - могут быть векторы. Объект может быть многоканальным.


Рассмотрим работу системы.


В случае неизменных параметров объекта, структура и параметры адаптивного регулятора не меняются, действует главная обратная связь, сис­тема представляет собой систему стабилизации.

Если параметры объекта меняются, то они оцениваются идентификато­ром в реальном времени и происходит изменение структуры и параметров адаптивного регулятора так, чтобы поведение системы оставалось неизмен­ным.

Основные требования предъявляются к идентификатору (быстродействие и т.д.) и к самому алгоритму идентификации.

Такой класс систем используют для управления объектами с медленными нестационарностями.

Если мы имеем нестационарный объект общего вида:


,

, .


Простейший адаптивный вид будет следующий:


.


Требования, которые предъявляются к системе:


, (*)

,


где и - матрицы постоянных коэффициентов.

Реально мы имеем:


или

(**)


Если приравнять (*) и (**), то получим соотношение для определения параметров регулятора


3.3.Адаптивные системы с эталонной моделью


В таких системах существует эталонная модель (ЭМ), которая ставится параллельно объекту.



БА - блок адаптации.


Рис2. Функциональная схема АСЭМ


Рассмотрим работу системы.


В том случае, когда параметры объекта не меняются или процессы на выходе соответствуют эталонным, ошибка , не работает блок адаптации и не перестраивается адаптивный регулятор, в системе действует плавная обратная связь.

Если поведение отлично от эталонного, это происходит при изменении параметров объекта, в этом случае появляется ошибка , включается блок адаптации, перестраивается структура адаптивного регулятора, таким образом чтобы свести к эталонной модели объекта.

Блок адаптации должен сводить ошибку к нулю ().

Алгоритм, закладываемый в блок адаптации, формируется различными способами, например, с использованием второго метода Ляпунова:


.


Если это будет выполняться, то система будет асимптотически устойчива и .



1. Экстремальные системы управления


Введение

Экстремальные СУ – это такие САУ, в которых один из показателей качества работы нужно удерживать на предельном уровне (min или max).

Классическим примером экстремальной СУ является система автоподстройки частоты радиоприёмника.

A




- экстремальная характеристика


w

Рис.1.1. Амплитудно-частотная характеристика


1.1. Постановка задачи синтеза экстремальных систем


Объекты описываются уравнениями:

(1.1)

Экстремальная характеристика дрейфует во времени.

Необходимо подобрать такое управляющее воздействие, которое позволяло бы автоматически находить экстремум и удерживать систему в этой точке.

U: extr Y=Yo (1.2)

Y


y – выход динамической части объекта

Y – экстремальный выход



Yo - точка экстремума


yo y

Рис.1.2. Статическая экстремальная характеристика


Необходимо определить такое управляющее воздействие, которое обеспечило выполнение свойства:

(1.3)


1.2. Условие экстремума


Необходимое условие экстремума – равенство нулю первых частных производных.


G – градиент. (1.4)

Достаточное условие экстремума – равенство нулю вторых частных производных .

При синтезе экстремальной системы необходимо оценить градиент, но вектор вторых частных производных оценить невозможно, и на практике, вместо достаточного условия экстремума используют соотношение:

- min (1.5)

- max (1.6)


Этапы синтеза экстремальной системы:

  1. оценка градиента.

  2. Организация движения в соответствии с условием: G 0, т.е. движение к экстремуму.

  3. Стабилизация системы в точке экстремума


U = f+BU y Y

P y = g(x)

экстремальная

регулятор характеристика


БОГ


Рис.1.3. Функциональная схема экстремальной системы


1.3. Виды экстремальных характеристик


1) Унимодальная экстремальная характеристика типа модуля


Y

Y = k |y| (1.7)

Y = k1|y-y0(t)| + k2(t)

k1 – определяет наклон;

Yo yo – горизонтальный дрейф экстремума;

k2 – вертикальный дрейф экстремума.


y0


Рис. 1.4. Экстремальная характеристика типа модуля


2) Экстремальная характеристика типа параболы

Y


Y = ky2; (1.8)

Y = k1 [y-yo(t)]2 + k2(t)


y


Рис. 1.5. Экстремальная характеристика типа параболы


3) В общем случае экстремальную характеристику можно описать параболой n-го порядка:

Y = k1|y-yo(t)|n + k2|y-yo(t)|n-1 + …+kn| y-yo(t)| + kn+1(t). (1.9)


4) Векторно-матричное представление

Y = yTBy (1.10)


1.4. Способы оценки градиента


1.4.1. Способ деления производных


Рассмотрим его на унимодальной характеристике, y- выход динамический части системы.

yR1, Y = Y(y,t)

Найдём полную производную по времени:

(1.11)

При медленном дрейфе , таким образом (1.12)

Достоинство: простота.

Недостаток: при малых 0 нельзя определить градиент.


- дифференцирующий фильтр.

y Y


БОГ


G


Рис. 1.6. Схема оценки частной производной


1.4.2. Дискретная оценка градиента


(1.13)


y Y


Недостаток: невозможность определения

G при y = 0.


y(kT) Z-1 Z-1 Y(kT)


G

Рис. 1.7. Схема дискретной оценки частной производной


1.4.3. Дискретная оценка знака градиента


При малом шаге дискретизации заменяем: Т 0:


(1.14)


1.4.4. Метод синхронного детектирования


Метод синхронного детектирования предполагает добавление ко входному сигналу на экстремальный объект дополнительного синусоидального сигнала малой амплитуды, высокой частоты и выделение из выходного сигнала соответствующей составляющей. По соотношению фаз этих двух сигналов можно сделать вывод о знаке частных производных.


y Y

ГСК – генератор синусоидальных

asinwt колебаний.

ФЧУ ФЧУ – фазо-чувствительное устройство

ГСК Ф - фильтр

Ф


Z

Рис. 1.8. Функциональная схема оценки частной производной


Y


Yo


t

t


y

y1 yo y2

a


t t


Рис. 1.9. Иллюстрация прохождения поисковых колебаний на выход системы


y1 – рабочая точка

При этом разность фаз сигналов равна 0.

y2 – разность фаз сигналов равна 

В качестве простейшего ФЧУ можно использовать блок перемножения.


ФЧУ

y 1) 2)



1) Y 2)



Рис. 1.10. Иллюстрация работы ФЧУ


В качестве фильтра выбирают усредняющий на периоде фильтр, который позволяет получить на выходе сигнал, пропорциональный значению частной производной.


Y При малой амплитуде поискового сигнала можно считать, что статическая характеристика в малой окрестности рабочей точки – линейка и аппроксимируем её касательной в этой точке.



y1 y

Рис. 1.11. Линеаризация статической характеристики в рабочей точке


Следовательно уравнение экстремальной кривой можно заменить уравнением прямой:

(1.16)


Сигнал на выходе ФЧУ:

(1.17)

k – коэффициент пропорциональности – тангенс угла наклона прямой.

. (1.18)

Сигнал на выходе фильтра:


Таким образом: (1.19)


Метод синхронного детектирования годится для определения не только одной частной производной, но и градиента в целом, при этом на вход подаётся несколько колебаний различной частоты. Соответствующие фильтры на выходе выделяют реакцию на конкретный поисковый сигнал.


1.4.5. Специальный фильтр оценки градиента


Этот метод предполагает введение в систему специальную динамическую систему, промежуточный сигнал которой равен частной производной.


y


Z



29-04-2015, 04:06


Страницы: 1 2
Разделы сайта