Расчет валов редуктора

нагруженного кольца);

Кб – коэффициент безопасности, учитывающий динамическую нагрузку (по таблице 9.19 [3] в зависимости от области применения привода, характера пиковых нагрузок и их величины);

КТ =1 – температурный коэффициент при t < 100 (при повышенной рабочей температуре подшипников по таблице 9.20 [3]);


V=1 – для всех подшипников редукторов по схемам 1…7.

Принимаем Кб =1,8 с учетом и повышенных требований к надежности.

9.4.1.1. При вращении входного вала против часовой стрелки .

а) Для опоры А , в которой всю нагрузку воспринимает подшипник 1 (пункт 9.3.2.1,ж расчета)

Так как 2,43 > e=0,37, то по таблице 9.18 [3] х=0,4, а по таблице П7 [3] у=1,62

(0,4·1·1029+1,62·2503)·1,8·1=8040 Н

а) Для опоры Б , которая является "плавающей" и подшипник не воспринимает осевых нагрузок, т.е. х=1, а у=0.

1·442·1,8·1=796 Н

9.4.1.2. При вращении входного вала по часовой стрелке.

а) Для опоры А , в которой всю нагрузку воспринимает подшипник 2 (пункт 9.3.2.2,ж расчета)

Так как 4,11 > e=0,37, то по таблице 9.18 [3] х=0,4, а по таблице П7 [3] у=1,62

(0,4·1·610+1,62·2503)·1,8·1=7738 Н

а) Для опоры Б , которая является "плавающей" и подшипник не воспринимает осевых нагрузок, т.е. х=1, а у=0.


1·861·1,8·1=1550 Н

9.4.2. Эквивалентная нагрузка с учетом переменного режима работы.

где Х2 и Х3 – параметры графике нагружения по пункту 1.2.6. [6]

а) Для опоры А

При нереверсивном приводе и вращении входного вала против часовой стрелки

5600 Н

При нереверсивном приводе и вращении входного вала по часовой стрелке


5390 Н

а) Для опоры Б

При нереверсивном приводе и вращении входного вала против часовой стрелки

554 Н

При нереверсивном приводе и вращении входного вала по часовой стрелке


1080 Н

Для частореверсивного привода с одинаковым характером нагружения при вращении валов в обе стороны для расчета Р можно использовать зависимость

где – коэффициент относительной нагрузки i опоры при вращении валов в разные стороны.

Нагружения подшипника опоры Б составляют: Н; Н.

Тогда 0,51

РБ 894 Н

9.4.3. Расчетная долговечность подшипников.

, часов

где с – динамическая грузоподъемность

ni – относительная частота вращения колец подшипника (частота вращения рассчитываемого вала).

Р – показатель степени (Р=3 – шарикоподшипник и Р= – роликоподшипник)

Для опоры А с подшипниками №7207 – =38500 Н, а Р=.

Для опоры Б с подшипниками №207 – с=13700 Н, а Р=3.

n1 = 2880 мин-1

а) Долговечность опоры Б

Для частореверсивного привода при РБ =894 Н

20824 часов > t=3000 часов


б) Долговечность опоры А

В опоре А использованы два конических подшипника, каждый из которых работает только при вращении вала в одну сторону. При этом для частореверсируемого привода требуемый срок службы подшипника в два раза меньше срока службы привода, а расчетной нагрузкой является наибольшая, т.е. РА =5600 Н


3576 часов > t = часов

9.5. Проверочный расчет быстроходного вала на прочность.

Диаметры быстроходного вала завышены из конструктивных соображений и обычно имеют большие запасы прочности. Учитывая это, а так же с целью сокращения объема расчетных работ, студентам разрешается не производить проверку прочности быстроходного вала.


9.6. Реакции опор и изгибающих моментов промежуточного вала.

В разработанной конструкции редуктора (рисунок 7.12 [6]) промежуточный вал выполнен за одно с шестерней цилиндрической передачи II ступени. Вал-шестерня опирается на два конических роликоподшипника, установленных "враспор". Расчетные конструктивные схемы промежуточного вала приведены в верхней части рисунков 9.5,а и б. При этом рисунок 9.5,а соответствует вращению входного вала против часовой стрелки, а рисунок 9.5,б – по часовой.


9.6.1. Расчетные расстояния между точками опор В и Г и сечениями приложения внешних сил.

При опирании вала на два однорядных радиально-упорных подшипника, установленных "враспор", расчетные точки опор вала расположены на расстояниях "а" (рисунок 9.1.) от наружных торцов подшипников во внутреннею сторону.

Для подшипника № 7207

=16 мм

Требуемое расчетное расстояние берется из эскизного проекта редуктора с учетом "а".

L4 =55 мм; l5 =80 мм; l6 =44 мм.

9.6.2. Реакции от сил в зацеплении колес.

9.6.2.1. При вращении входного вала против часовой стрелки. (рис. 9.5,а)

а) В плоскости XOZ

∑МВZ = 0;

4239 Н

∑МГZ = 0;

1159 Н

Проверка ∑FZ = 0; 1159+911-6309+4239=0

Реакции найдены правильно.

б) В плоскости ХOY

∑МВY = 0;

701 Н

∑МГY = 0;

755 Н

Проверка ∑FY = 0; 755-2503+2449-701=0

Реакции найдены правильно.

в) Результирующие радиальные реакции в опорах

1383 Н

4297 Н

г) Суммарная внешняя осевая нагрузка.


Fa∑ =Fa1 I I - Fa2I =2341-565=1776 H

д) Осевые составляющие от радиальных нагрузок в предварительно выбранных радиально-упорных конических роликоподшипниках № 7207.

По таблице П7 [3] е=0,37

SВ =0,83·е·0,83·0,37·1383=425 Н

SГ =0,83·е·0,83·0,37·4297=1320 Н

е) Общие осевые нагрузки на опоры.

В выбранной конструкции узла промежуточного вала подшипники установлены "враспор", а сила Fa∑ направлена влево, что соответствует схеме установки "а" по таблице 9.2. При этом опора 1 соответствует В, а опора 2 обозначена Г.

Условие нагружения Fa∑ + SГ = 1775 + 1320 > SB =425 H, т.е. I случай нагружения

SГ + Fa∑ = 1320+1775=3096 H


SГ = 1320 H

9.6.2.2. При вращении входного вала по часовой стрелке. (рис. 9.5,б)

а) В плоскости XOZ

∑МВZ = 0;

4798 Н

∑МГZ = 0;

2422 Н

Проверка ∑FZ = 0; 4798-911-6309+2422=0

Реакции найдены правильно.

б) В плоскости ХOY

∑МВY = 0;

2993 Н

∑МГY = 0;

1959 Н

Проверка ∑FY = 0; 1959-2503+2449-2993=0

Реакции найдены правильно.

в) Результирующие радиальные реакции в опорах

3115 Н

5655 Н

г) Суммарная внешняя осевая нагрузка.

Fa∑ =Fa1 I I - Fa2I =2341-565=1776 H

д) Осевые составляющие Si от радиальных нагрузок конических роликоподшипниках № 7207.По таблице П7 [3] е=0,37

SВ =0,83·е·0,83·0,37·3115=957 Н

SГ =0,83·е·0,83·0,37·5655=1736 Н

е) Общие осевые нагрузки на опоры.

Подшипники установлены "враспор", а сила Fa∑ направлена влево, что соответствует схеме установки "г" по таблице 9.1. При этом опора 1 соответствует В, а опора 2 обозначена Г.

Условие нагружения Fa∑ + SВ = 1776 + 957 > SГ =1736 H, т.е. III случай нагружения

SВ + Fa∑ = 957+1776=2733 H

SВ = 957 H

9.6.3. Построение эпюр изгибающих моментов (рис 9.4.).

9.6.3.1. При вращении входного вала против часовой стрелки (рис 9.5,а).

а) Плоскость ХOZ

Сечения В и Г – МВ Y =0; МГ Y =0

Сечение IV слева – MIVY =1159·55·10-3 =63,7 Н·м

Сечение IV справа – MIVY =1159·55·10-3 -56510-3 =20,8 Н·м

Сечение V – MVY =4239·44·10-3 =186,5 Н·м

б) Плоскость ХОY

Сечения В и Г – МВ Z =0; МГ Y =0

Сечение IV – MIVZ =755·55·10-3 =41,5 Н·м

Сечение V справа – MVZ =701·44·10-3 =30,8 Н·м

Сечение V слева – MVZ =701·44·10-3 +234110-3 =98,3 Н·м

в) Максимальные изгибающие моменты в сечениях IV и V

MIV =76 Н·м

MV =210,8 Н·м

9.6.3.2. При вращении входного вала по часовой стрелки (рис 9.5,б).

а) Плоскость ХOZ

Сечения В и Г – МВ Y =0; МГ Y =0

Сечение IV слева – MIVY =2422·55·10-3 =133,2 Н·м

Сечение IV справа – MIVY =2422·55·10-3 -56510-3 =90,3 Н·м

Сечение V – MVY =4798·44·10-3 =211,1 Н·м

б) Плоскость ХОY

Сечения В и Г – МВ Z =0; МГ Z =0

Сечение IV – MIVZ =1959·55·10-3 =107,7 Н·м

Сечение V справа – MVZ =2993·44·10-3 =131,7 Н·м

Сечение V слева – MVZ =2993·44·10-3 +234110-3 =64,3 Н·м

в) Максимальные изгибающие моменты в сечениях IV и V

=171,3 Н·м

=248,8 Н·м

9.7.Расчет подшипников быстроходного вала.

9.7.1. Эквивалентная радиальная нагрузка.

RE =(X·V·Rr +Y·Ra )·KБ· KT


V=1,0; KT =1; Kб =1,8 (смотри раздел 9.4.1. расчета)

а) При вращении входного вала против часовой стрелки.

Для опоры В

Так как 2,24 > e=0,37, то по таблице 9.18 [3] х=0,4, а по таблице П7 [3] у=1,62

(0,4·1·1383+1,62·3096)·1,8·1=10024 Н

Для опоры Г

Так как 0,31 < e=0,37, то по таблице 9.18 [3] х=1, а у=0

1·1·4297·1,8·1=7735 Н

9.4.1.2. При вращении входного вала по часовой стрелке.

Для опоры В

Так как 0,31 < e=0,37, то по таблице 9.18 [3] х=1, а у=0

1·1·3115·1,8·1=5607 Н

Для опоры Г

Так как 0,48> e=0,37, то по таблице 9.18 [3] х=0,4, а по таблице П7 [3] у=1,62

(0,4·1·5655+1,62·2733)·1,8·1=12041 Н

9.7.2. Эквивалентная нагрузка с учетом переменного режима работы.


Подшипники в опорах В и Г промежуточного вала одинаковы. Поэтому расчет ведется для наиболее нагруженного подшипника.

Для частореверсивного привода с одинаковым характером нагружения при вращении валов в обе стороны для расчета Р можно использовать зависимость.

где – коэффициент относительной нагрузки i опоры при вращении валов в разные стороны.

У нас наиболее нагруженной является опора Г: Н; Н.

Тогда 0,64

РГ 7190 Н

9.4.3. Расчетная долговечность подшипников.

, часов

Роликоподшипник №7207 с=38500 Н и Р=

частота вращения подшипника n2 =150 мин-1

Для частореверсивного привода с наиболее нагруженными подшипником опоры Г (РГ =7190 Н)


29850 часов > t=3000 часов

9.8. Проверочный расчет промежуточного вала на прочность.

Для промежуточного вала выполненного за одно с шестерней, то есть в виде вал шестерни (рисунок 7.12 [6]), достаточно провести расчет только сечения IV (рисунок 9.5.) под зубчатым колесом.

9.8.1. Материал вала и предельные напряжения.

Материал промежуточного вала, выполненного в виде вала шестерни, соответствует материалу шестерни 40ХН. Термообработка – улучшение. По таблице П2 [6] твердость 248…293 НВ, а временное сопротивление σв =880 МПа.


Предел выносливости при симметричном цикле изгиба для легированной стали.

σ-1 =0,35·σв +100 = 0,34·880+100= 408 МПа

Предел выносливости при симметричном цикле касательных напряжений.

τ-1 = 0,58·σ-1 =0,58·408=237 МПа

9.8.2. Сечение IV. В этим сечении вала (рисунок 9.5.) при частом реверсировании действует суммарной изгибающий момент =171,3 Нм и вращающий момент Т2 =190,2Нм. Концентрация напряжений обусловлена наличием шпоночного паза. Размеры сечения вала (рисунок 9.7.) приведены с использованием таблицы 9.8. [3].

а) Полярный момент сопротивления

мм3

б) Момент сопротивления изгибу

мм3

в) Амплитуды и максимальные касательные напряжения при частом реверсировании (симметричный цикл).


τа = τмах ==МПа; τm =0

г) Амплитуда цикла нормальных напряжений изгиба

σа =31,96 МПа

д) Средние нормальные могут возникнуть от осевой силы. Так как в принятых конструктивных исполнениях сила Fa не действует в сечении IV-VI, а передается ступицей червячного колеса над сечением, то – σм =0, где АIV – площадь вала в сечении IV-VI.

е) Коэффициент запаса прочности по нормальным напряжениям.

=

где Кσ – эффективный коэффициент концентрации напряжений;

εσ – масштабный фактор для нормальных напряжений;

β – коэффициент, учитывающий влияние шероховатости поверхности (при Rа = 0,4…3,2 мкм принимают β=0,97…0,9);

Ψσ – коэффициент чувствительности к асимметрии цикла напряжений;

Кσ = 1,9 – для сечения вала с одной шпоночной канавкой при σв =880 МПа (по таблице 8.5. [3]);

εσ = 0,73– для легированной стали при d=40 мм по таблице 8.8. [3];

β = 0,96 – при шероховатости поверхности Rа = 0,8…мкм;

Ψσ = 0,15 – для легированной стали странице 300 [5].

ж) Коэффициент запаса прочности по касательным напряжениям

=

где Кτ , ετ , ψτ – Коэффициенты, учитывающий влияние на касательные напряжения аналогичных факторов, что и для нормальных напряжений.

Кτ = 1,9 – для сечения вала с одной шпоночной канавкой при σв =880 МПа (по таблице 8.5. [3]);

ετ = 0,75 – для легированной стали;

β = 0,96 – при шероховатости поверхности Rа = 0,8…мкм;

ψτ = 0,1 – для легированной стали странице 300 [5].

з) Результирующий коэффициент запаса прочности.

3,53 > [S] = 2

При невыполнении условия прочности для вал-шестерни увеличивают диаметры рассматриваемых сечений. При невыполнении условия прочности для вала из стали 45, которая задается в предварительных расчетах, назначают новую более качественную легированную сталь или увеличивают диаметры.

9.9. Реакции опор и вращающие и изгибающие моменты тихоходного вала.


В разработанной конструкции редуктора (рисунок 7.12 [6]) тихоходный вал опирается на два радиальных шарикоподшипника, установленных "враспор". При этом расчетные точки Д и С принимаются в середине подшипников, как показано на конструктивных схемах, приведенных в верхней части рисунков 9.8. а и б. Эти рисунки соответствуют вращению входного вала против часовой стрелке и по часовой стрелке. Требуемые расчетные расстояния l7 = 146 мм; l8 =54 мм берутся из эскизного проекта редуктора, а расстояние l9 =85 мм с учетом расположения звездочки цепной передачи и муфты предельного момента на тихоходном валу. Рекомендации по


29-04-2015, 04:12

Страницы: 1 2 3
Разделы сайта