Технология изготовления болтов методом холодной штамповки

в горячей воде, 3) пассивирование, 4) промывка в горячей воде, 5) нанесение известково-солевого покрытия, 6) сушка, 7) калибровка.

Известково-солевое покрытие имеет существенные недостатки. Поваренная соль ускоряет процесс корро­зии металла, в сырую погоду впитывает влагу и за­трудняет процесс волочения. Кроме того, известь очень пылит, засоряет воздух и помещение цеха и тем самым ухудшает условия труда.

При подготовке к штамповке нержавеющих сталей может применяться омеднение. На Дружковском метиз­ном заводе омеднение металла, идущего на холодную штамповку болтов (с редуцированием стержня); про­изводится по следующей технологии: а) травление;

б) промывка в горячей и холодной воде; в) омеднение;

г) промывка в холодной воде; д) нейтрализация (из­весткование) ; е) сушка.

После калибровки металл подвергается вторичному мед нению. Омеднение производится в растворе, содер­жащем 120—150 г/л медного купороса, 50—60 г/л сер­ной кислоты и 2—3 г/л столярного клея при темпера­туре раствора 18—22°С в течение 1—1,5 мин (двукратное погружение). Омеднение считается удовлет­ворительным, если поверхность металла покрыта сплошной медной пленкой без отслоения, рыхлости и просвечивания основного металла (через пленку).

Омеднение уступает фосфатированию по эффектив­ности снижения коэффициента трения, кроме того, при нанесении медного покрытия трудно контролировать его свойства.

Положительные результаты при штамповке трудно деформируемых сталей дают лаковые покрытия и об­работка в растворе щавелевой кислоты (оксалатирование). Указанные покрытия применяются и при штам­повке цветных сплавов.

На калиброванный металл перед штамповкой или в процессе штамповки наносится технологическая смаз­ка. В качестве смазки часто используется мыльная эмульсия. Хорошие результаты дает применение раст­вора сульфида молибдена в машинном масле.

В последние годы находят применение в процессах штамповки специальные смазки—укринолы. На мос­ковском заводе «Станконормаль» используется смазочно-охлаждающая жидкость на основе парафина (СОЖ В23 К) и укринол 5/5, позволяющие штампо­вать металл без фосфатного покрытия.

Для получения заготовки с требуемыми для штам­повки болтов размерами

При изготовлении болтов из низкоуглеродистых сталей 10, Юкп, 20, 20 кп волочение, как правило, про­водится с обжатием 12—20% без промежуточного от­жига. Подкат из среднеуглеродистых и легированных марок стали для облегчения процесса волочения от­жигается.

Оптимальная схема подготовки к штамповке среднеуглеродистых и легированных сталей включает:

1) отжиг горячекатаного металла; 2) подготовку по­верхности металла к волочению; 3) волочение с обжатием 25—30%; 4) промежуточный сфероидизиру-ющий отжиг; 5) подготовку поверхности (фосфатирование); 6) волочение с обжатием 5—8%.

В результате промежуточного отжига после воло­чения стабилизируются структура металла и механи­ческие свойства, способствуя (совместно с последую­щим фосфатированием) снижению усилий штамповки, улучшению качества изделий и повышению износостойкости инструмента.

По рекомендациям ВНИИметиза применение про­межуточного отжига целесообразно и при штамповке болтов (с редуцированием) из сталей 20, ЗО кп (клас­сы прочности 5.8, 6.8).

При отжиге низкоуглеродистых сталей, протянутых с обжатием 8—16%, следует учитывать возможность интенсивного роста зерна, вследствие чего снижается пластичность стали. Поэтому перед отжигом не следу­ет проводить волочение при указанных величинах де­формаций.

ИЗГОТОВЛЕНИЕ БОЛТОВ

ХАРАКТЕРИСТИКИ ПРОЦЕССА ХОЛОДНОЙ ШТАМПОВКИ

Холодной пластической деформацией в практике штамповочного производства называют процесс, проте­кающий без принудительного нагрева металла.

В процессе деформации происходит механическое упрочнение (наклеп), повышаются твердость деформи­руемого металла, пределы прочности и текучести и снижаются относительное удлинение и сужение.

Процесс деформации сопровождается нагревом ме­талла и инструмента, температура которых может до­стигать 300° С..

При холодной объемной штамповке всей заготовке придается заданная форма и размеры путем заполнения материалом рабочей полости штампов. Высадка, в отличие от штамповки, заключается в осадке части заготовки между подвижным (пуансоном) и неподвиж­ным (матрицей) инструментом.

Основными достоинствами холодной штамповки яв­ляются высокая производительность, точность размеров и чистота поверхности изделий, повышенная прочность штампуемых деталей, низкий расход металла, широкий диапазон изготовляемых типоразмеров. Холодной штам­повкой изготовляются болты с диаметром стержня до 30 мм. Однако в последнее время таким способом из­готовляют болты с метрической резьбой, имеющие .стержень диаметром до 52 мм.

Основной недостаток холодной деформации — сни­жение пластичности металла вследствие наклепа и со­ответственно повышение опасности хрупкого разруше­ния болтов при эксплуатации. Особенно возрастает опасность хрупкого разрушения для болтов из среднеуглеродистых и легированных сталей, которые, как правило, .необходимо подвергать термообработке, спо­собствующей исключению неблагоприятных последст­вий холодной деформации.

Процесс штамповки болтов заключается в том, чтобы из заготовки диаметром меньше диаметра отвер­стия в матрице (на величину зазора) и значительно меньше диаметра наибольшего сечения головки болта можно получить изделие необходимых размеров.

При выборе технологического процесса холодной штамповки необходимо учитывать следующие пара­метры:

1. Отношение длины свободной осаживаемой части заготовки к ее диаметру lo/dy.

Под свободно осаживаемой частью заготовки пони­мается отрезок, заключенный между матрицей и пуан­соном, т. е. отрезок, не контактирующий с инструмен­том. Величина этого отношения характеризует труд­ность процесса формообразования головки болта и устойчивость свободного отрезка металла к продольно­му изгибу. Чем меньше величина lo/dy, тем легче про­текает процесс деформации и лучше оформление конечной заготовки. При большой величине отношения возможен изгиб стержня и нарушение правильной кон­фигурации заготовки (возникновение прогибов, скла­док), что ведет к браку продукции.

Для предотвращения указанных нарушений процес­са высадки отношение длины свободной осаживаемой части к диаметру не должно превосходить определенной величины. При превышении этой величины про­цесс формообразования головки разделяется на не­сколько переходов.

Следует отметить, что при высадке болтов с пре­дельным отношением lo/do необходимо обеспечить чи­стый срез заготовки и перпендикулярность плоскости отреза к продольной оси. При осадке заготовки с ко­сым срезом торцовой площадки возможен ее изгиб и, как следствие, брак продукции.

Возможность изгиба заготовки при осадке увеличи­вается со снижением сил трения по контактируемым поверхностям заготовки и пуансона. Поэтому при не­благоприятных условиях для исключения продольного изгиба заготовки ее концевую часть защемляют в пуансоне.

Неблагоприятные условия снижают допустимую длину свободной осаживаемой части заготовки. Например, при косой отрезке заготовки и неудовлетворительном состоянии рабочей поверхности пуансона предельная величина отношения lo/do при высадке за один, удар может снизиться до 1,5 do и ниже.

При высадке головки болта за несколько переходов первые переходы носят подготовительный характер. На подготовительных переходах заготовка принимает про­межуточную форму, при этом вследствие осадки про­исходит уменьшение отношения lo/do (для последующе­го перехода). Окончательное оформление головки осуществляется на последнем переходе высадки.

2. Отношение диаметра высаживаемой головки к ее высоте.

Чем больше отношение D/H, т. е. чем меньше вы­сота головки болта и больше диаметр, тем труднее протекает процесс высадки, тем больше усилие для формообразования головки.

Практически влияние величины D и Н оценивают через отношение D/do и H/do. Отношение H/do, особен­но для нержавеющей стали, не должно быть меньше 0,5. Отношение D/do при высадке за один удар должно составлять не более 2,2, за два удара 2,2—2,6, за три удара 2,6—4,0.

3. Относительная и истинная деформация.

Отношение lo/do не характеризует интенсивности процесса деформирования 'и является в основном тех­нологическим фактором. Деформация при формообра­зовании головки оценивается величинами относитель­ной деформации или истинной (логариф­мической) деформации.

Кроме того, при оценке процесса осадки необходимо учитывать и величину деформации в поперечном на­правлении (уширение q= {Fi—Fo)jFi, где Fo и Fi — соответственно начальная и конечная площадь попе­речного сечения заготовки.

При высадке полукруглых, потайных, полупотайных и шестигранных головок болтов величины поперечной деформации различны в различных сечениях головки. В сечении с наименьшим поперечным размером проис­ходит минимальная деформация, в сечении с наиболь­шим размером — максимальная. В этих случаях необ­ходимо учитывать среднюю и максимальную величину поперечной деформации.

Очевидно, что для цилиндрических головок болтов поперечная деформация во всех сечениях головки имеет одинаковую величину. Чем больше величина средней деформации, тем выше усилие формообразования го­ловки, тем больше вероятность появления трещин при осадке, тем важнее пластические свойства металла.

Максимальная поперечная деформация для нецилиндрических головок имеет место на ограниченных участках высаживаемой головки и вероятность появ­ления трещин на этих участках зависит главным об­разом от количества и величины дефектов поверхности исходного материала.

Таким образом, по величинам деформации определя­ют 'возможность высадки головки болтов без нарушений сплошности материала и оценивают силовые параметры высадки. При выборе технологического процесса необхо­димо стремиться к получению минимальной степени де­формации.

Степень деформации при высадке головок может быть снижена путем увеличения диаметра исходного металла. Увеличение диаметра исходного металла воз­можно при процессе штамповки, включающем редуци­рование или прямое выдавливание стержня.

Редуцирование представляет операцию заталкивания заготовки в редуцирующую матрицу (рис. 4, а),сопровождающуюся уменьшением диаметра стержня соответственно диаметру редуцирующего пояска (без осадки заготовки). Качество процесса редуцирования

а д

Рис. 4. Редуцирование (в) и прямое выдавливание (б)

определяется, главным образом, продольной устойчи­востью заготовки (отсутствием изгиба стержня) 'и зави­сит от 'степени уменьшения сечения стержня при редуци­ровании.

Предельная величина уменьшения диаметра стерж­ня при свободном редуцировании составляет 15—16%. Превышение этой величины может привести к изгибу стержня и наплыву металла перед матрицей.

Редуцируются, как правило, болты с длиной стерж­ня, не превышающей 10 диаметров резьбы. Редуцирова­ние более .длинных заготовок требует повышенной точности изготовления инструмента и часто затрудни­тельно из-за изгиба стержня при выталкивании заго­товки из матрицы. В отечественной и зарубежной прак­тике редуцирование больших длин производится редко и только при значительном снижении скорости редуци­рования.

При прямом выдавливании заготовка полностью за­полняет канал матрицы (ом. рис. 4, б), свободная часть отсутствует и опасности потери устойчивости при заталкивании заготовки практически нет. Выдав­ливанием можно уменьшать диаметр- стержня до 50% и более.

Благоприятные условия протекания процесса пря­мого выдавливания (неравномерное трехстороннее сжа­тие) способствуют увеличению пластичности металла, поэтому трещины при этом процессе на поверхности изделий, не возникают. При прямом выдавливании воз­можны относительные деформации до 95%. Так же как и редуцирование, выдавливание больших длин не производится.

ТЕХНОЛОГИЧЕСКИЕ ПРОЦЕССЫ ХОЛОДНОЙ ШТАМПОВКИ БОЛТОВ

Технологический процесс изготовления заготовок болтов с шестигранной головкой (без резьбы) включает в себя образование промежуточной формы головки, окончательное оформление головки (шестигранника), получение стержня с требуемыми размерами, образо­вание фаски.

Шестигранную головку можно получить обрезкой предварительно высаженной цилиндрической головки, или пластической деформацией .Фаска на конце стержня также может выполняться как пластической деформацией (при штамповке бол­тов), так и резанием. Предпочтительным является об­разование фаски резанием на встроенном в высадочный автомат приспособлении, так как при образовании фас­ки выдавливанием в матрице усложняется изготовление матриц, а при накатке резьбы на стержне с выдавленной фаской снижается стойкость накатного инстру­мента.

При получении фаски выдавливанием на каждую длину болта требуется своя матрица, в то время как при штамповке без оформления фаски перестройка ав­томата по длине болта не влечет смены матрицы. Од­нако при штамповке болтов из низкоуглеродистой стали и при ограниченных перестройках автомата це­лесообразно образование фаски выдавливанием.

Известны следующие основные технологические про­цессы штамповки болтов: без редуцирования; с одно­кратным редуцированием; с двукратным редуцировани­ем; с выдавливанием и редуцированием,.

Технологический процесс высадки без редуцирова­ния применяется для изготовления болтов М6-М24 с уменьшенной головкой с диаметром гладкой части

стержня, равным среднему диаметру резьбы (ГОСТ 7795—70, ГОСТ 7811—70), и коротких болтов с резь­бой до головки или с малой величиной гладкого участка (ГОСТ 7796—70 и ГОСТ 7808—70) из низко­углеродистых сталей Юкп и 20 кп. Болты изготовля­ются преимущественно без термической обработки классов срочности 4.8, 5.8 и 6.8. Технологические пере­ходы штамповки приведены на рис. 5.

Цилиндрическая головка высаживается за два уда­ра, размеры стержня изменяются незначительно. При изготовлении болтов с направляющим подголовком одновременно с высадкой головки происходит образо­вание подголовка.

Прочность болтов, как правило, несколько ниже прочности исходного калиброванного металла, так как снижается вследствие осадки предва­рительно упрочненного при волочении металла (эффект Баушингера).

Достоинством метода является простота изготовле­ния технологического инструмента.

Недостатками процесса являются:

1. Невозможность изготовления болтов с диаметром гладкой части стержня, равным наружному диаметру •резьбы (за исключением коротких болтов, у которых гладкая часть стержня может образоваться одновре­менно с высадкой головки).

2. Большая степень деформации при высадке голов­ки и, как следствие, большие нагрузки на инструмент и повышенная опасность возникновения трещин на го­ловке, особенно при высадке болтов из среднеуглеродистых и легированных сталей, большая неравномер­ность свойств головки и стержня.

3. Необходимость обязательной термообработки болтов из среднеуглеродистых сталей из-за значитель­ного охрупчивания металла и повышенной опасности разрушения под головкой.

4. Трудность изготовления болтов с нормальной головкой.

Недостатки этого процесса штамповки болтов при­вели к постепенному вытеснению его более прогрессив­ными, включающими операцию редуцирования стержня.

Рис. 6. Технологические схемы изготовления болтов высадкой с однократным редуцированием стержня

Процесс изготовления болтов высадкой с однократ­ным редуцированием в настоящее время получил наи­большее распространение для изготовления болтов с диаметром стержня, равным наружному диаметру резь­бы (ГОСТ 7796—70, ГОСТ 7798—70, ГОСТ 7805—70, ГОСТ 7808—70).

Болты могут изготовляться как из низкоуглеродистых, так и из среднеуглеродистых и легированных марок стали. Технологические переходы штамповки показаны на рис. 6.

Наиболее распространенным является процесс вы­садки с однократным редуцированием из металла диа­метром, равным наружному диаметру резьбы (см. рис. 6, а). При данном процессе высадка цилиндриче­ской головки осуществляется за два удара, диаметр гладкой части стержня почти не изменяется. Участок под накатывание резьбы образуется редуцированием на диаметр под накатку. Размеры диаметров под на­катывание метрической резьбы регламентируются ГОСТ 19256—73.

Для болтов из низкоуглеродистых сталей одновре­менно с высадкой головки может осуществляться вы­давливание фаски на конце стержня.

Степень деформации головки при высадке с одно­кратным редуцированием и охрупчивание под головкой меньше, чем при высадке без редуцирования, однако еще достаточно велика, особенно для болтов с нор­мальной головкой.

Болты из среднеуглеродистых сталей при этом про­цессе целесообразно термически обрабатывать для сня­тия наклепа. Механические свойства болтов соответст­вуют свойствам исходного калиброванного металла. Редуцирование повышает прочность стержня сравни­тельно с прочностью проволоки лишь в случае обжатий менее 20%.

Технология штамповки болтов с однократным реду­цированием по методу ЗИЛа (см. рис. 6, б) применя­ется для изготовления коротких болтов с резьбой до головки. При этом способе диаметр исходного металла больше наружного диаметра резьбы, и поэтому степень деформации головки сравнительно с предыдущим про­цессом снижается.

Вследствие уменьшения отношения lo/do головка мо­жет оформляться за один переход. Отличительной осо­бенностью этого процесса штамповки является нали­чие позиции, на которой происходит выдавливание фаски.

При высадке с редуцированием на однопозицион­ных автоматах (в одной матрице) редуцирование стер­жня производится первым ударом одновременно с вы­садкой конической головки. Окончательное оформление головки происходит при втором ударе.

Совмещение на одной позиции операций высадки головки с редуцированием нежелательно, так как при этом увеличиваются нагрузки на инструмент и снижа­ется его стойкость. Кроме того, при высадке головки происходит раздача конца редуцированного стержня, и при выталкивании заготовки из матрицы это приво­дит к дополнительному истиранию редуцирующего пояска.

Высадка с редуцированием осуществляется, как правило, на многопозиционных автоматах. При многопозиционных процессах заготовка штампуется в не­скольких матрицах. Эти процессы получили в настоя­щее время наибольшее распространение в специализи­рованном производстве болтов.

Процесс изготовления болтов высадкой с двукрат­ным редуцированием в последнее время получил широ­кое распространение для штамповки болтов с диаметром стержня, равным наружному диаметру резьбы. Высадкой с двукратным редуцированием изготовляют болты из среднеуглеродистых и легированных сталей в широком диапазоне классов прочности (от 4.6 до 10.9). Технологические переходы штамповки представлены на рис. 7.

Диаметр исходной заготовки при этом процессе на 10—15% больше наружного диаметра резьбы, поэтому высадка головки осуществляется за один удар. При первом редуцировании (относительное обжатие не бо­лее 30%) происходит уменьшение диаметра части за­готовки, идущей на образование стержня болта, до

Рис. 7. Технологические схемы изготовления болтов высадкой с двукратным редуцированием стержня

размера наружного диаметра резьбы, второе редуциро­вание (аналогично предыдущему процессу) служит для образования участка под накатку резьбы (см. рис. 7, а).

Степень деформации и упрочнение материала го­ловки меньше, чем при высадке без редуцирования и с однократным редуцированием, что позволяет в ряде случаев избежать термообработки болтов, изготовлен­ных из среднеуглеродистых сталей. Прочность болтов выше прочности исходного калиброванного металла вследствие упрочнения стержня при редуцировании.

При высадке с двукратным редуцированием снижа­ются нагрузки на инструмент и вероятность возникно­вения трещин на головке вследствие уменьшения сте­пени деформации при высадке.

Однако по сравнению с однократным редуцирова­нием усложняется инструмент (две редуцирующие мат­рицы), что сдерживает распространение этого про­цесса.

Кроме того, при изготовлении болтов из легирован­ных сталей (с термической обработкой) затрудняется процесс накатки резьбы вследствие упрочнения метал­ла при двойном редуцирований участка под резьбу.

Штамповка с двукратным редуцированием по мето­ду ЗИЛа (см. рис. 7, б) отличается от рассмотренного способа введением операции выдавливания фаски, что вызывает необходимость совмещения на одной позиции редуцирования с выссадкой головки. Как уже указыва­лось выше, это ведет к "снижению стойкости инстру­мента.

Процесс высадки с выдавливанием и однократным редуцированием обеспечивает получение болтов повы­шенной прочности без термообработки с временным со­противлением до 100 кгс/мм2 (рис. 8).

Рис. 8. Технологическая схема изготовления болтов высадкой с выдавливанием и редуцированием стержня

Исходным материалом служит заготовка диаметром (1,2-1,3) do.

Заготовка осаживается на первой прессовой пози­ции с относительной деформацией 10% с образованием фаски. Осадка заготовки облегчает проведение после­дующих операций выдавливания и редуцирования. Вы­давливание стержня на диаметр, равный наружному диаметру резьбы, производится в закрытой матрице с относительной деформацией до 50% 'и более. При этом процессе неравномерность свойств головки и стержня практически отсутствует, прочность на много выше проч­ности исходного калиброванного металла.

Основными недостатками процесса, препятствующи­ми его распространению, является необходимость при­менения выдавливающих пуансонов малого диаметра и матриц с большим перепадом диаметров, сложных в изготовлении, необходимость обеспечения высокой соосности пуансонов и матриц.

У всех рассмотренных выше процессов изготовления болтов образование многогранника происходит путем обрезки граней. Масса отходов при обрезке достигает 6—8% от массы болта.

Процесс обрезки характеризуется большими удар­ными нагрузками


29-04-2015, 04:17


Страницы: 1 2 3 4
Разделы сайта