Характеристика различных способов тригонометрического нивелирован

6,0

8,0

Всхолмленный

1

S, D

3,3

9,9

16,5

24,7

33,0

41,2

49,5

2

S, D

2,7

8,1

13,5

20,2

26,9

33,6

40,4

3

S, D

4,6

14,0

23,1

34,6

46,2

57,6

69,3

Горный, особые случаи

1

S, D

6,0

18,1

30,1

45,1

60,3

75,2

90,4

2

S, D

4,9

14,8

24,6

36,9

49,2

61,5

73,8

3

S, D

8,4

25,4

42,2

63,1

84,3

105,2

126,6

Величины уклонений отвеса по линиям 12, 13 равны между собой при одинаковых азимутах линий. При расположении линий 12, 13 в одной вертикальной плоскости, проходящей через точку 1 величины уклонений отвеса по линиям равны по абсолютной величине, но противоположны по знаку.

Вычисленные величины погрешности превышений в зависимости от погрешностей учета уклонений отвеса приведены в таблице 1.6.

В тригонометрическом нивелировании через точку величины mh / R независимо от того, будут ли использоваться горизонтальные проложения или непосредственно измеренные наклонные расстояния, не будут превышать для плоскоравнинного района 1 мм, для всхолмленного – 2,5мм, для горного – 5 мм.

По данным этой таблицы хорошо прослеживается зависимость величин ошибок превышений, вычисленных с использованием горизонтальных проложений от зенитных расстояний. Тогда как при использовании непосредственно измеренных наклонных расстояний эта зависимость существует в меньшей мере и только в одностороннем тригонометрическом нивелировании.

Таблица 1.6. Величины погрешности превышений в зависимости от погрешностей учета уклонений отвеса

Районы

Способ

Вид расстояния

Величины mh / R в мм для горизонтальных проложений в км

0,2

0,6

1,0

1,5

2,0

2,5

3,0

Плоскоравнинный

Н≤0,5км

1

S

0,0

0,3

0,8

1,9

3,3

5,2

7,5

D

0,1

0,6

1,2

2,4

3,6

5,4

7,8

2

S

0,0

0,0

0,0

0,0

0,0

0,0

0,0

D

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Всхолмленный

Н≤1,5км

1

S

0,1

0,8

2,1

4,7

8,3

13,0

18,8

D

0,3

1,5

3,0

6,0

9,0

13,5

19,5

2

S

0,1

0,3

0,4

0,6

0,9

1,1

1,3

D

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Горный

Н≤6км

1

S

2,2

7,5

14,2

24,4

36,7

51,0

67,5

D

0,6

3,0

6,0

12,0

18,0

27,0

39,9

2

S

2,0

6,0

10,0

15,0

50,0

25,0

30,0

D

0,0

0,0

0,0

0,0

0,0

0,0

0,0

Уклонения отвеса, представленные через погрешности в определении R, не влияют на двухстороннее тригонометрическое нивелирование с измерением наклонных расстояний.

В тригонометрическом нивелировании через точку с использованием горизонтальных проложений, ошибки превышений, возникающие под влиянием уклонений отвесных линий, несколько больше зависят от величин зенитных расстояний, чем при использовании непосредственно измеренных наклонных длин.

Ослабление влияния уклонений отвеса в тригонометрическом нивелировании через точку происходит только в случае, когда А12 – А12 < 90°.

Данные таблиц 1.5 и 1.6 характеризуют порядок величин погрешностей превышений имеющих место при неучете уклонений отвесных линий.

1.7. Влияние непараллельности уровенных поверхностей на определяемое превышение

Рассмотрим влияние непараллельности уровенных поверхностей на определяемое превышение.

Из формулы (1.10) видно, что поправка ΔЕ не зависит от способа тригонометрического нивелирования, зенитного расстояния и от того используются непосредственно измеренные наклонные расстояния или горизонтальные проложения. Эта поправка состоит из двух частей:

аномальной – равной

; ρ (1.36)

и нормальной

2 – Н1 )(В2 – В1 )sin2Bm (1.37)

Величины нормальной части поправки ΔЕ для всех районов работ при S<3км будет меньше. Только при z = 60° и S = 3 км она становится равной 5 мм.

Величины погрешностей превышений за счет неучета непараллелльности уровенных поверхностей приведены в таблице 1.7.

Таблица 1.7. Величины погрешностей превышений за счет неучета непараллелльности уровенных поверхностей

Районы

Способ

Вид расстояния

Величины mh /ΔЕ в мм для горизонтальных проложений в км

0,2

0,6

1,0

1,5

2,0

2,5

3,0

Плоскоравнинный

1, 2

S

0,2

0,5

0,8

1,2

1,7

2,1

2,5

D

0,2

0,5

0,8

1,2

1,7

2,1

2,5

3

S

0,3

0,7

1,2

1,7

2,4

3,0

3,5

D

0,3

0,7

1,2

1,7

2,4

3,0

3,5

Всхолмленный

1, 2

S

0,7

2,1

3,5

5,3

7,0

8,8

10,5

D

0,7

2,1

3,5

5,3

7,0

8,8

10,5

3

S

1,0

3,0

5,0

7,5

9,9

12,5

14,9

D

1,0

3,0

5,0

7,5

9,9

12,5

14,9

Горный

1, 2

S

3,5

10,6

17,6

26,4

35,2

44,0

52,8

D

3,5

10,6

17,6

26,4

35,2

44,0

52,8

3

S

5,0

15,0

24,9

37,4

49,7

62,3

74,7

D

15,0

24,9

37,4

49,7

62,3

74,7

1.8. Сравнение погрешностей определения превышений различными способами тригонометрического нивелирования

Для выяснения возможной точности каждого из существующих способов тригонометрического нивелирования, необходимо вычислить средние квадратические значения ошибок превышений.

Сравнение величин погрешностей превышений для различных способов тригонометрического нивелирования выполним только для измеренных результатов.

Величины средних квадратических ошибок определения превышений в зависимости от погрешностей источников, входящих в формулы, приведены в таблице 1.8.

Таблица 1.8. Величины средних квадратических ошибок определения превышений в зависимости от погрешностей источников входящих в формулы

Районы

Способ

Вид расстояния

Величины mh в мм для горизонтальных проложений в км

0,2

0,6

1,0

1,5

2,0

2,5

3,0

Плоскоравнинный

1

D, S

10,6

31,8

52,9

79,4

105,9

132,5

158,9

2

D, S

4,3

12,9

21,6

32,0

43,2

54,0

64,7

3

D, S

3,8

11,2

18,8

28,2

37,5

46,8

56,2

Всхолмленный

1

S

10,6

31,8

53,0

79,5

106,0

132,5

159,0

D

10,6

31,8

53,0

79,4

105,9

132,4

158,9

2

S

4,3

13,0

21,7

32,1

43,3

54,1

64,9

D

4,3

12,9

21,6

32,0

43,2

54,0

64,7

3

S

3,9

11,4

19,1

28,6

38,0

47,4

56,9

D

3,8

11,2

18,8

20,2

37,5

46,8

56,2

Горный

1

S

10,6

31,9

53,2

79,7

106,3

132,9

159,5

D

10,7

31,8

53,0

79,4

105,9

132,5

158,9

2

S

4,4

13,2

22,0

32,6

43,9

54,9

65,8

D

4,6

13,0

21,7

32,1

43,2

54,0

64,7

3

S

4,1

12,1

20,4

30,5

40,6

50,7

60,9

D

3,8

11,3

18,9

28,4

37,8

47,1

56,6

Особые случаи

1

S

14,2

43,1

71,8

107,9

143,1

179,8

215,9

D

11,7

32,2

53,2

79,6

106,1

132,5

159,0

2

S

6,2

18,7

31,0

46,5

62,0

77,5

93,0

D

6,6

13,8

22,0

32,7

43,3

54,1

64,7

3

S

6,9

20,6

34,5

51,5

68,7

85,9

103,4

D

12,8

16,8

22,6

30,9

39,7

48,8

58,0

Анализ данных, приведенных в таблице, позволяет считать тригонометрическое нивелирование через точку наиболее оптимальным и точным способом нивелирования.

1. При его выполнении в сетях триангуляции происходит ослабление влияния уклонения отвеса и непараллельности уровенных поверхностей.

2. Экономится время за счет того, что определяется превышение между точками, находиться с инструментом на которых нет необходимости.

3. Измерения зенитных расстояний по направлениям выполняется в один и то же момент времени, за счет чего происходит значительное ослабление рефракционных воздействий.

4. Возможно повышение точности измерения зенитных расстояний вследствие уменьшения длин сторон до наблюдаемых пунктов.

2. Геодезические методы определения превышений центров пунктов государственной геодезической сети

Различают три способа тригонометрического нивелирования:

- способ одностороннего тригонометрического нивелирования;

- способ двухстороннего тригонометрического нивелирования;

- способ тригонометрического нивелирования через точку (из середины).

2.1. Способ одностороннего тригонометрического нивелирования

Полная формула одностороннего тригонометрического нивелирования имеет вид:[6]

h12 = Н – Н

h12 = s12 ·ctgz12 + + · S12 ·ctgz12 – (ξ·cosA12 + η1 ·sinA12 ) ± (2.1)

В случае линейного измерения уклонений отвесных линий формула преобразуется:

h12 = Н – Н= h12Г – (ξ1 ·cosA12 + η1 ·sinA12 – ξ2 ·cosA21 – η2 ·sinA21 ) (2.2)

Коэффициент вертикальной рефракции определяется по формуле:

K'12 = 1 + · sin2 z12 · (h'12 – h'12 Г ) + + + + (2.3)

В формулах (2.1-2.3) приняты следующие обозначения:

h'12 = s12 ·ctgz12 + i1 – α2 – вычисляемое превышение из тригонометрического нивелирования с учетом высоты горизонтальной оси теодолита (i1 ) и наблюдаемой цели (α2 ) над центром знаков 1 и 2;

s12 – измеренное расстояние между пунктами 1 и 2 отнесенное к поверхности референц-эллипсоида;

R – средний радиус кривизны референц-эллипсоида для линии s12 , имеющий азимут А12 или А21 ;

z12 – измеренное зенитное расстояние с пункта 1 на пункт 2;

Н и Н – геодезические высоты пунктов 1 и 2;

ξ2 , ξ1 , η2 , η1 – составляющие полного уклонения отвесной линии в меридиане и первом вертикале для пунктов 1 и 2;

q – поправка в измеренное зенитное расстояние за гнутие зрительной трубы и влияние длиннопериодических погрешностей вертикального круга;

H= - средняя нормальная высота линии 1-2;

Hи H – нормальные высоты пунктов 1 и 2;

ζ0 = - средняя высота квазигеоида над референц-эллипсоидом для линии 1-2.

2.2. Способ двухстороннего тригонометрического нивелирования

Пользуясь упрощенной теорией двухсторонних наблюдений зенитных расстояний для определения превышения между пунктами следует:[7]

1) (h1/2 )1 = s·ctgz1 + ·s2 + i1 – α2 ,

2) (h2/1 )2 = s·ctgz2 + ·s2 + i2 – α1 (2.4)

В этих формулах превышения между пунктами вычислены по наблюдениям на пунктах 1 и 2 соответственно.

К1 и К2 – коэффициенты вертикальной рефракции. При


29-04-2015, 00:57


Страницы: 1 2 3 4
Разделы сайта