Нечеткие множества в системах управления

нечеткими отношениями R1 и R2 .

Случай двух и более лингвистических переменных

Пусть <a, Ta , X, Ga , Ma > и <b, Tb , Y, Gb , Mb > - лингвистические переменные, и высказываниям <a есть a'>, <b есть b '> соответствуют нечеткие множества А и В заданные на X и Y.

Составные нечеткие высказывания вида 3, связывающие значения лингвистических переменных a и b, можно привести к высказываниям вида 1, введя лингвистическую переменную (a, b), значениям которой будут соответствовать нечеткие множества на X´Y.

Напомним, что нечеткие множества А и В, заданные на X и Y, порождают на X´Y нечеткие множества и , называемые цилиндрическими продолжениями, с функциями принадлежности:

(x,y ) = mA (x ) при любом y ,

(x,y ) = mB (y ) при любом x ,

где (x,y ) X´Y.

Нечеткие множества, соответствующие составным высказываниям

<a есть a' и b есть b'> и

<a есть a' или b есть b'>,

определяются по следующим правилам (преобразования к виду 1), справедливым при условии невзаимодействия переменных, т.е. множества X и Y таковы, что их элементы не связаны какой-либо функциональной зависимостью.

Правила преобразований нечетких высказываний

Правило преобразования конъюнктивной формы

Справедливо выражение:

<a есть a' и b есть b'>Þ<(a, b) есть (a'Çb')>.

Здесь Þ - знак подстановки, a'Çb' - значение лингвистической переменной (a, b), соответствующее исходному высказыванию <a есть a' и b есть b'>, которому на X´Y ставится в соответствие нечеткое множество Çc функцией принадлежности

(x,y ) = (x,y )L(x,y ) = mA (x )LmB (y ).

Правило преобразования дизъюнктивной формы

Справедливо выражение:

<a есть a' или b есть b'>Þ<(a,b) есть (a'Èb')>, где значению (a'Èb') лингвистической переменной (a, b) соответствует нечеткое множество È, с функцией принадлежности

(x,y ) = (x,y )V(x,y ) = mA (x )VmB (y ).

Замечание 1. Правила справедливы также для переменных вида <a, T1 , X, G1 ,M1 > и <a, T2 , Y, G2 , M2 >, когда в форме значений лингвистических переменных формализованы невзаимодействующие характеристики одного и того же объекта. Например, для построения нечеткого множества высказывания <ночь теплая и очень темная > нужно использовать правило конъюнктивной формы, а для высказывания <ночь теплая или очень темная > - правило дизъюнктивной формы.

Замечание 2. Если задана совокупность лингвистических переменных {<ai , Ti , Xi , Gi , Mi >}, i = 1, 2, .., n , то любое составное высказывание, полученное из высказываний <a есть a'> с использованием модификаторов "очень ", "не ", "более или менее " и др. и связок "и ", "или ", можно привести к виду <a есть a'>, где a - составная лингвистическая переменная (a1 ,a2 ,..,an ), a' - ее значение, определяемое (как и функция принадлежности) в соответствии с вышеуказанными правилами.

Правило преобразования высказываний импликативной формы

Справедливо выражение:

<если a есть a', то b есть b'>Þ <(a, b) есть (a'®b')>, где значению (a'®b') лингвистической переменной (a, b) соответствует нечеткое отношение XRY на X´Y.

Функция принадлежности mR (x,y ) зависит от выбранного способа задания нечеткой импликации.

Способы определения нечеткой импликации

Будем считать, что заданы универсальные множества X и Y, содержащие конечное число элементов. Под способом определения нечеткой импликации "если А, то В" (где А и В нечеткие множества на X и Y соответственно) будем понимать способ задания нечеткого отношения R на X´Y, соответствующего данному высказыванию.

С целью обоснованного выбора определения нечеткой импликации, японскими математиками Мидзумото, Танака и Фуками было проведено исследование всех известных по литературе определений (плюс предложенные авторами). Рассмотренные определения задавали следующие нечеткие отношения для высказывания "если А, то В":

Rm = (A´B)È(´Y)

mRm (x,y ) = (mA (x )LmB (y )) V (1 - mA (x ));

Ra = (´Y)Å(X´B)

mRa (x,y ) = 1 L (1-mA (x ) + mB (y ));

Rc = A´B

mRc (x,y ) = mA (x )LmB (y );

Rs = A´YX´B

mRs (x,y ) = ;

Rg = A´YX´B

mRg (x,y ) = ;

Rsg = ( A´YX´B ) Ç ( )

;

Rgg = ( A´YX´B) Ç ()

;

Rgs = ( A´YX´B) Ç ()

;

Rss = ( A´YX´B) Ç ()

;

Rb = (´Y)È(X´B)

mRb (x,y) = (1-mA (x)) ÚmB (y);

Rà = A´YX´B

;

R· = A´YX´B

R* = A´YX´B

mR* (x,y) = 1 - mA (x)+ mA (x)×mB (y);

R# = A´YX´B

mR# (x,y)=( mA (x)ÙmB (y))Ú ((1 - mA (x)) Ù(1 - mB (y)) Ú(mB (y) Ù(1 - mA (x));

RÑ = A´YX´B

Правилом вывода являлось композиционное правило вывода с использованием (max-min)-композиции.

В качестве значений на входе системы рассматривались:

A' = A;

A' = "очень А"= А2 , mA 0,5 (x) = mA (x)2 ;

A' = "более или менее А" = А0,5 mA 0,5 (x)= mA (x)0,5 ;

A' = mA (x)0,5 , (x) = 1 - mA (x).

Приведем таблицу итогов исследования. В ней символ "0" означает выполнение соответствующей схемы вход-выход, символ "x" - невыполнение. Следствие "неизвестно" (Н) соответствует утверждению: "если x=A, то нельзя получить никакой информации об y".

В данной таблице первая графа -"Посылка", вторая -"Следствие".

1 2 Rm Ra Rc Rs Rg Rsg Rgg Rgs Rss Rb R* R#
A B x x 0 0 0 0 0 0 0 x x x x x x
A2 B2 x x x 0 x 0 x x 0 x x x x x x
A2 B x x 0 x 0 x 0 0 x x x x x x x
A0,5 B0,5 x x x 0 0 0 0 0 0 x x x x x x
A0,5 B x x 0 x x x x x x x x x x x x
Н 0 0 x 0 0 x x x x 0 0 0 0 x x
A B x x x x x 0 0 0 0 x x x x x x

Кроме ответа о выполнении соответствующей схемы (0 или х),авторами исследованы явные выражения для функций принадлежности следствий по каждому из вариантов определения нечеткой импликации, на основе чего ими был сформулирован вывод:

- Rm и Ra не могут быть использованы;

- Rc может использоваться частично; - Rs , Rg , Rsg , Rgg , Rgs , Rss рекомендованы к использованию;

- Rb , Rà, R·, R* , R# , RÑ не рекомендованы к использованию.

Логико-лингвистическое описание систем, нечеткие модели.

Логико-лингвистические методы описания систем основаны на том, что поведение исследуемой системы описывается на естественном (или близком к естественному) языке в терминах лингвистических переменных.

Входные и выходные параметры системы рассматриваются как лингвистические переменные, а качественное описание процесса задается совокупностью высказываний следующего вида:

L1 : если <A 1 > то <B 1 >,

L2 : если <A 2 > то <B 2 >,

....................

Lk : если <Ak > то <Bk >,

где <Ai >, i =1,2,..,k - составные нечеткие высказывания, определенные на значениях входных лингвистических переменных, а <Bi >, i = 1,2,..,k - высказывания, определенные на значениях выходных лингвистических переменных.

С помощью правил преобразования дизъюнктивной и конъюнктивной формы описание системы можно привести к виду:

L1 : если <A1 > то <B1 >,

L2 : если <A2 > то <B2 >,

....................

Lk : если <Ak > то <Bk >,

где A1 ,A2 ,..,Ak - нечеткие множества, заданные на декартовом произведении X универсальных множеств входных лингвистических переменных, а B1 , B2 , .., Bk - нечеткие множества, заданные на декартовом произведении Y универсальных множеств выходных лингвистических переменных.

Совокупность импликаций {L1 , L2 , ..., Lk } отражает функциональную взаимосвязь входных и выходных переменных и является основой построения нечеткого отношения XRY, заданного на произведении X´Y универсальных множеств входных и выходных переменных. Если на множестве X задано нечеткое множество A, то композиционное правило вывода B = A·R определяет на Y нечеткое множество B с функцией принадлежности

mB (y ) =(mA (x ) LmR (x,y ))

Таким образом, композиционное правило вывода в этом случае задает закон функционирования нечеткой модели системы.

Рассмотрим широко цитируемый пример решения задачи нечеткого логического управления: построение модели управления паровым котлом.

Модель управления паровым котлом

Прототипом модели послужил паровой двигатель (лабораторный) с двумя входами (подача тепла, открытие дросселя) и двумя выходами (давление в котле, скорость двигателя).

Цель управления: поддержание заданного давления в котле (зависит от подачи тепла) и заданной скорости двигателя (зависит от открытия дросселя). В соответствии с этим, схема системы управления двигателем выглядит следующим образом:

Рассмотрим одну часть задачи - управление давлением.

Входные лингвистические переменные :

РЕ - отклонение давления (разность между текущим и заданным значениями);

СРЕ - скорость изменения отклонения давления.

Выходная лингвистическая переменная:

НС - изменение количества тепла.

Значения лингвистических переменных:

NB - отрицательное большое;

NM- отрицательное среднее;

NS- отрицательное малое;

NO- отрицательное близкое к нулю;

ZO- близкое к нулю;

PO - положительное близкое к нулю;

PS - положительное малое;

PM - положительное среднее;

PB - положительное большое.

Управляющие правила (15 правил), связывающие лингвистические значения входных и выходных переменных, имеют вид: "Если отклонение давления = Аi и, если скорость отклонения давления = Вi , то изменение количества подаваемого тепла равно Сi ", где Аi , Вii - перечисленные выше лингвистические значения.

Полный набор правил задавался таблицей:

Отклонение

давления РЕ

Скорость изменения

отклонения давления СРЕ

Изменение количества

подаваемого тепла НС

1 NB NB или NM PB
2 NB или NM NS PM
3 NS PS или NO PM
4 NO PB или PM PM
5 NO NB или NM NM
6 PO или ZO NO NO
7 PO NB или NM PM
8 PO PB или PM NM
9 PS PS или NO NM
10 PB или PM NS NM
11 PB NB или NM NB
12 NO PS PS
13 NO NS NS
14 PO PS PS
15 PO PS NS

Лингвистические значения отклонений задавались нечеткими подмножествами на шкалах X, Y, Z следующей таблицей:

-6 -5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5 +6
PB 0,3 0,7 1
PM 0,3 0,7 1 0,7 0,3
PS 0,3 0,7 1 0,7 0,3
PO 0,3 1 0,7 0,3
NO 0,3 0,7 1 0,3
NS 0,3 0,7 1 0,7 0,3
NM 0,3 0,7 1 0,7 0,3
NB 1 0,7 0,3

То есть области значений входных переменных PE, CPE и выходной переменной НС представлялись 13 точками [-6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6], равномерно расположенными между максимальными отрицательными и положительными значениями этих переменных.

Приведем управляющие правила к виду: "еслиi ´ Вi ), то Сi ", где (Аi ´Вi ) декартово произведение нечетких множеств А и В , заданных на шкалах X и Y с функцией принадлежности

(x,y )= mAi (x )LmBi (y ),

определенной на X´Y.

Для каждого из правил вида "еслиi ´Вi ), то Сi ", где (Аi ´Вi )- входное нечеткое множество, а Сi - соответствующее нечеткое значение выхода, определялось нечеткое отношение

Ri =(Аi ´Вi )´Сi , i = 1, 2, ..., 15

с функцией принадлежности

mRi ((x,y ),z )= (mAi (x )LmBi (y ))LmCi (z ).

Совокупности всех правил соответствовало нечеткое отношение

R = Ri

с функцией принадлежности

mR (x,y,z ) = mRi ((x,y ),z ).

При заданных значениях А¢, В¢ входных переменных регулирующее значение С¢ входной переменной определялось на основе композиционного правила вывода:

С¢ = (А¢´В¢)R,

где - (max-min)-композиция.

Функция принадлежности С¢ имеет вид:

mC ¢(z ) = (mA ¢(x ) LmB ¢ (y )) LmR (x,y,z ).

Числовое значение z 0 (изменение подаваемого тепла) определяется при этом либо из условия mC ¢(z 0 ) = mC ¢ (z ),

либо по формуле

z 0 = ,

где N - количество точек в Z (в данном случае N=13).

Задача управления скоростью двигателя решалась аналогично. Результаты практического использования показали, что разработанная нечеткая модель управления сравнима с классическими моделями оптимального управления.

Появление первых работ по построению моделей нечеткого логического управления для конкретных систем определило ряд общих вопросов, касающихся логических основ моделей, в их числе:

о полноте и непротиворечивости совокупности правил управления;

об адекватности представления правил управления вида "если А, то В " нечеткими отношениями, определяемыми разными способами;

о правильности способа вывода, основанного на (max-min)-композиции и возможности использования других видов операции композиции.

Полнота и непротиворечивость правил управления

Наиболее часто требование полноты для системы "если Аi , то Вi ", i =1,2,..,n , сводится к

X = Supp Ai ,

где Supp Ai - носитель нечеткого множества Ai . Содержательно это означает, что для каждого текущего состояния х процесса существует хотя бы одно управляющее правило, посылка которого имеет ненулевую степень принадлежности для х .

Непротиворечивость системы управляющих правил чаще всего трактуется как отсутствие правил, имеющих сходные посылки и различные или взаимоисключающие следствия.

Степень непротиворечивости i -го и k -го правил можно задавать величиной

Cik = | (mAi (x )LmAk (x )) - (mBi (y )LmBk (y ))|.

Суммируя по k , получаем оценку непротиворечивости i -го правила в системе:

Ci = Cik , 1<i <N , k ¹ i .

Если эта оценка превосходит некоторое пороговое значение, то правило из системы удаляется. В частности, для рассматриваемой выше модели управляющей системы парового котла, оценки степеней непротиворечивости равны:

╬ правила 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Ci 2,4 3,4 4,2 3,8 4,2 1,8 4,5 3,5 4,0 3,9 1,7 3,3 4,1 3,7 3,3

Таким образом, при пороговом значении g=3 в модели остается всего три правила 1, 6 и 11.

Литература

Заде Л.А. Понятие лингвистической переменной и его применение к принятию приближенных решений. М.:Мир, 1976.

Кофман А. Введение в теорию нечетких множеств. М.: Радио и связь, 1982.

Нечеткие множества в моделях управления и искусственного интеллекта /Под ред. Д.А. Поспелова. М., 1986.

Прикладные нечеткие системы /Под ред. Тэтано Т., Асаи К., Сугэно М: Мир, 1993.

Нечеткие множества и теория возможностей. Последние достижения / Под ред. Р.Ягера М.: Радио и связь, 1986.

Орловский С.А. Проблемы принятия решений при нечеткой исходной информации. М.: Наука, 1981.

Борисов А.Н., Крумберг О.А., Федоров И.П. Принятие решений на основе нечетких моделей. Примеры использования. Рига:/ "Зинатне", 1990.

Малышев Н.Г., Берштейн Л.С., Боженюк А.В. Нечеткие модели для экспертных систем в САПР. М.: Энергоатомиздат, 1991.

Мелихов А.Н., Бернштейн Л.С., Коровин С.Я. Ситуационные советующие системы с нечеткой логикой. М.: Наука, 1990.

Р.Беллман, Л.Заде. Вопросы принятия решений в расплывчатых условиях // Вопросы анализа и процедуры принятия решений. / М.: Мир,1976.




29-04-2015, 02:39

Страницы: 1 2 3 4
Разделы сайта