Оглавление
Вступление
Глава 1. Основные принципы фармацевтического анализа
1.1 Критерии фармацевтического анализа
1.2 Ошибки, возможные при проведении фармацевтического анализа
1.3 Общие принципы испытаний подлинности лекарственных веществ
1.4 Источники и причины недоброкачественности лекарственных веществ
1.5 Общие требования к испытаниям на чистоту
1.6 Методы фармацевтического анализа и их классификация
Глава 2. Физические методы анализа
2.1 Проверка физических свойств или измерение физических констант лекарственных веществ
2.2 Установление рН среды
2.3 Определение прозрачности и мутности растворов
2.4 Оценка химических констант
Глава 3. Химические методы анализа
3.1 Особенности химических методов анализа
3.2 Гравиметрический (весовой) метод
3.3 Титриметрические (объемные) методы
3.4 Газометрический анализ
3.5 Количественный элементный анализ
Глава 4. Физико-химические методы анализа
4.1 Особенности физико-химических методов анализа
4.2 Оптические методы
4.3 Абсорбционные методы
4.4 Методы, основанные на испускании излучения
4.5 Методы, основанные на использовании магнитного поля
4.6 Электрохимические методы
4.7 Методы разделения
4.8 Термические методы анализа
Глава 5. Биологические методы анализа1
5.1 Биологический контроль качества лекарственных средств
5.2 Микробиологический контроль лекарственных средств
Выводы
Список использованной литературы
Вступление
Фармацевтический анализ — это наука о химической характеристике и измерении биологически активных веществ на всех этапах производства: от контроля сырья до оценки качества полученного лекарственного вещества, изучения его стабильности, установления сроков годности и стандартизации готовой лекарственной формы. Фармацевтический анализ имеет свои специфические особенности, отличающие его от других видов анализа. Эти особенности заключаются в том, что анализу подвергают вещества различной химйческой природы: неорганические, элементорганические, радиоактивные, органические соединения от простых алифатических до сложных природных биологически активных веществ. Чрезвычайно широк диапазон концентраций анализируемых веществ. Объектами фармацевтического анализа являются не только индивидуальные лекарственные вещества, но и смеси, содержащие различное число компонентов. Количество лекарственных средств с каждым годом увеличивается. Это вызывает необходимость разработки новых способов анализа.
Способы фармацевтического анализа нуждаются в систематическом совершенствовании в связи с непрерывным повышением требований к качеству лекарственных средств, причем растут требования как к степени чистоты лекарственных веществ, так и к количественному содержанию. Поэтому необходимо широкое использование не только химических, но и более чувствительных физико-химических методов для оценки качества лекарств.
К фармацевтическому анализу предъявляют высокие требования. Он должен быть достаточно специфичен и чувствителен, точен по отношению к нормативам, обусловленным ГФ XI, ВФС, ФС и другой НТД, выполняться в короткие промежутки времени с использованием минимальных количеств испытуемых лекарственных препаратов и реактивов.
Фармацевтический анализ в зависимости от поставленных задач включает различные формы контроля качества лекарств: фармакопейный анализ, постадийный контроль производства лекарственных средств, анализ лекарственных форм индивидуального изготовления, экспресс-анализ в условиях аптеки и биофармацевтический анализ.
Составной частью фармацевтического анализа является фармакопейный анализ. Он представляет собой совокупность способов исследования лекарственных препаратов и лекарственных форм, изложенных в Государственной фармакопее или другой нормативно-технической документации (ВФС, ФС). На основании результатов, полученных при выполнении фармакопейного анализа, делается заключение о соответствии лекарственного средства требованиям ГФ или другой нормативно-технической документации. При отклонении от этих требований лекарство к применению не допускают.
Заключение о качестве лекарственного средства можно сделать только на основании анализа пробы (выборки). Порядок ее отбора указан либо в частной статье, либо в общей статье ГФ XI (вып. 2). Отбор пробы производят только из неповрежденных укупоренных и упакованных в соответствии с требованиями НТД упаковочных единиц. При этом должны строго соблюдаться требования к мерам предосторожности работы с ядовитыми и наркотическими лекарственными средствами, а также к токсичности, огнеопасности, взрывоопасности, гигроскопичности и другим свойствам лекарств. Для испытания на соответствие требованиям НТД проводят многоступенчатый отбор проб. Число ступеней определяется видом упаковки. На последней ступени (после контроля по внешнему виду) берут пробу в количестве, необходимом для четырех полных физико-химических анализов (если проба отбирается для контролирующих организаций, то на шесть таких анализов).
Из расфасовки "ангро" берут точечные пробы, взятые в равных количествах из верхнего, среднего и нижнего слоев каждой упаковочной единицы. После установления однородности все эти пробы смешивают. Сыпучие и вязкие лекарственные средства отбирают пробоотборником, изготовленным из инертного материала. Жидкие лекарственные средства перед отбором проб тщательно перемешивают. Если это делать затруднительно, то отбирают точечные пробы из разных слоев. Отбор выборок готовых лекарственных средств осуществляют в соответствии с требованиями частных статей или инструкций по контролю, утвержденных МЗ РФ.
Выполнение фармакопейного анализа позволяет установить подлинность лекарственного средства, его чистоту, определить количественное содержание фармакологически активного вещества или ингредиентов, входящих в состав лекарственной формы. Несмотря на то, что каждый из этих этапов имеет свою конкретную цель, их нельзя сматривать изолированно. Они взаимосвязаны и взаимно дополняют друг друга. Так, например, температура плавления, растворимость, рН среды водного раствора и т.д. являются критериями как подлинности, так и чистоты лекарственного вещества.
Глава 1. Основные принципы фармацевтического анализа
1.1 Критерии фармацевтического анализа
На различных этапах фармацевтического анализа в зависимости от поставленных задач имеют значение такие критерии, как избирательность, чувствительность, точность, время, затраченное на выполнение анализа, израсходованное количество анализируемого препарата (лекарственной формы).
Избирательность метода очень важна при проведении анализа смесей веществ, поскольку дает возможность получать истинные значения каждого из компонентов. Только избирательные методики анализа позволяют определять содержание основного компонента в присутствии продуктов разложения и других примесей.
Требования к точности и чувствительности фармацевтического анализа зависят от объекта и цели исследования. При испытании степени чистоты препарата используют методики, отличающиеся высокой чувствительностью, позволяющие устанавливать минимальное содержание примесей.
При выполнении постадийного контроля производства, а также при проведении экспресс-анализа в условиях аптеки важную роль имеет фактор времени, которое затрачивается на выполнение анализа. Для этого выбирают методы, позволяющие провести анализ в наиболее короткие промежутки времени и вместе с тем с достаточной точностью.
При количественном определении лекарственного вещества используют метод, отличающийся избирательностью и высокой точностью. Чувствительностью метода пренебрегают, учитывая возможность выполнения анализа с большой навеской препарата.
Мерой чувствительности реакции является предел обнаружения. Он означает наименьшее содержание, при котором по данной методике можно обнаружить присутствие определяемого компонента с заданной доверительной вероятностью. Термин ''предел обнаружения" введен вместо такого понятия, как "открываемый минимум", им пользуются также взамен термина "чувствительность". На чувствительность качественных реакций оказывают влияние такие факторы, как объемы растворов реагирующих компонентов, концентрации реактивов, рН среды, температура, продолжительность опыта. Это следует учитывать при разработке методик качественного фармацевтического анализа. Для установления чувствительности реакций все шире используют показатель поглощения (удельный или молярный), устанавливаемый спектрофотометрическим методом. В химическом анализе чувствительность устанавливают по величине предела обнаружения данной реакции. Высокой чувствительностью отличаются физико-химические методы анализа. Наиболее высокочувствительны радиохимические и масс-спектральный методы, позволяющие определять 10-8 —10-9 % анализируемого вещества, полярографические и флуориметрические 10-6 —10-9 %; чувствительность спектрофотометрических методов Ю-3 —10-6 %, потенциометрических 10-2 %.
Термин "точность анализа" включает одновременно два понятия: воспроизводимость и правильность полученных результатов. Воспроизводимость характеризует рассеяние результатов анализа по сравнению со средним значением. Правильность отражает разность между действительным и найденным содержанием вещества. Точность анализа у каждого метода различна и зависит от многих факторов: калибровки измерительных приборов, точности отвешивания или отмеривания, опытности аналитика и т.д. Точность результата анализа не может быть выше, чем точность наименее точного измерения.
Так, при вычислении результатов титриметрических определений наименее точная цифра — количество миллилитров титранта, израсходованного на титрование. В современных бюретках в зависимости от класса их точности максимальная ошибка отмеривания около ±0,02 мл. Ошибка от натекания тоже равна ±0,02 мл. Если при указанной общей ошибке отмеривания и натекания ±0,04 мл на титрование расходуется 20 мл титранта, то относительная ошибка составит 0,2%. При уменьшении навески и количества миллилитров титранта точность соответственно уменьшается. Таким образом, титриметрическое определение можно выполнять с относительной погрешностью ±(0,2—0,3)%.
Точность титриметрических определений можно повысить, если пользоваться микробюретками, применение которых значительно уменьшает ошибки от неточного отмеривания, натекания и влияния температуры. Погрешность допускается также при взятии навески.
Отвешивание навески при выполнении анализа лекарственного вещества осуществляют с точностью до ±0,2 мг. При взятии обычной для фармакопейного анализа навески 0,5 г препарата и точности взвешивания ±0,2 мг относительная ошибка будет равна 0,4%. При анализе лекарственных форм, выполнении экспресс-анализа такая точность при отвешивании не требуется, поэтому навеску берут с точностью ±(0,001—0,01) г, т.е. с предельной относительной ошибкой 0,1—1%. Это можно отнести и к точности отвешивания навески для колориметрического анализа, точность результатов которого ±5%.
1.2 Ошибки, возможные при проведении фармацевтического анализа
При выполнении количественного определения любым химическим или физико-химическим методом могут быть допущены три группы ошибок: грубые (промахи), систематические (определенные) и случайные (неопределенные).
Грубые ошибки являются результатом просчета наблюдателя при выполнении какой-либо из операций определения или неправильно выполненных расчетов. Результаты с грубыми ошибками отбрасываются как недоброкачественные.
Систематические ошибки отражают правильность результатов анализа. Они искажают результаты измерений обычно в одну сторону (положительную или отрицательную) на некоторое постоянное значение. Причиной систематических ошибок в анализе могут быть, например, гигроскопичность препарата при отвешивании его навески; несовершенство измерительных и физико-химических приборов; опытность аналитика и т.д. Систематические ошибки можно частично устранить внесением поправок, калибровкой прибора и т.д. Однако всегда необходимо добиваться того, чтобы систематическая ошибка была соизмерима с ошибкой прибора и не превышала случайной ошибки.
Случайные ошибки отражают воспроизводимость результатов анализа. Они вызываются неконтролируемыми переменными. Среднее арифметическое случайных ошибок стремится к нулю при постановке большого числа опытов в одних и тех же условиях. Поэтому для расчетов необходимо использовать не результаты единичных измерений, а среднее из нескольких параллельных определений.
Правильность результатов определений выражают абсолютной ошибкой и относительной ошибкой.
Абсолютная ошибка представляет собой разность между полученным результатом и истинным значением. Эта ошибка выражается в тех же единицах, что и определяемая величина (граммах, миллилитрах, процентах).
Относительная ошибка определения равна отношению абсолютной ошибки к истинному значению определяемой величины. Выражают относительную ошибку обычно в процентах (умножая полученную величину на 100). Относительные ошибки определений физико-химическими методами включают как точность выполнения подготовительных операций (взвешивание, отмеривание, растворение), так и точность выполнения измерений на приборе (инструментальная ошибка).
Значения относительных ошибок находятся в зависимости от того, каким методом выполняют анализ и что представляет собой анализируемый объект — индивидуальное вещество или многокомпонентную смесь. Индивидуальные вещества можно определять при анализе спек- трофотометрическим методом в УФ- и видимой областях с относительной погрешностью ±(2—3)%, ИК-спектрофотометрией ±(5—12)%, газо- жидкостцой хроматографией ±(3—3,5)%; полярографией ±(2—3)%; потенциометрией ±(0,3—1)%.
При анализе многокомпонентных смесей относительная погрешность определения этими методами возрастает примерно в два раза. Сочетание хроматографии с другими методами, в частности использование хроматооптических и хроматоэлектрохимических методов, позволяет выполнять анализ многокомпонентных смесей с относительной погрешностью ±(3—7)%.
Точность биологических методов намного ниже, чем химических и физико-химических. Относительная ошибка биологических определений достигает 20—30 и даже 50%. Для повышения точности в ГФ XI введен статистический анализ результатов биологических испытаний.
Относительная ошибка определения может быть уменьшена за счет увеличения числа параллельных измерений. Однако эти возможности имеют определенный предел. Уменьшать случайную ошибку измерений, увеличивая число опытов, целесообразно до тех пор, пока она станет меньше систематической. Обычно в фармацевтическом анализе выполняют 3—6 параллельных измерений. При статистической обработке результатов определений с целью получения достоверных результатов выполняют не менее семи параллельных измерений.
1.3 Общие принципы испытаний подлинности лекарственных веществ
Испытание на подлинность — это подтверждение идентичности анализируемого лекарственного вещества (лекарственной формы), осуществляемое на основе требований Фармакопеи или другой нормативно-технической документации (НТД). Испытания выполняют физическими, химическими и физико-химическими методами. Непременным условием объективного испытания подлинности лекарственного вещества является идентификация тех ионов и функциональных групп, входящих в структуру молекул, которые обусловливают фармакологическую активность. С помощью физических и химических констант (удельного вращения, рН среды, показателя преломления, УФ- и ИК-спектра) подтверждают и другие свойства молекул, оказывающие влияние на фармакологический эффект. Применяемые в фармацевтическом анализе химические реакции сопровождаются образованием окрашенных соединений, выделением газообразных или нерастворимых в воде соединений. Последние можно идентифицировать по температуре плавления.
1.4 Источники и причины недоброкачественности лекарственных веществ
Основные источники технологических и специфических примесей — аппаратура, исходное сырье, растворители и другие вещества, которые используют при получении лекарственных средств. Материал, из которого изготовлена аппаратура (металл, стекло), может служить источником примесей тяжелых металлов и мышьяка. При плохой очистке в препаратах могут содержаться примеси растворителей, волокна тканей или фильтровальной бумаги, песок, асбест и т.д., а также остатки кислот или щелочей.
На качество синтезируемых лекарственных веществ могут оказывать влияние различные факторы.
Технологические факторы — первая группа факторов, оказывающих влияние в процессе синтеза лекарственного вещества. Степень чистоты исходных веществ, температурный режим, давление, рН среды, растворители, применяемые в процессе синтеза и для очистки, режим и температура сушки, колеблющаяся даже в небольших пределах, — все эти факторы могут привести к появлению примесей, которые накапливаются от одной к другой стадии. При этом могут происходить образование продуктов побочных реакций или продуктов распада, процессы взаимодействия исходных и промежуточных продуктов синтеза с образованием таких веществ, от которых трудно затем отделить конечный продукт. В процессе синтеза возможно также образование различных таутомерных форм как в растворах, так и в кристаллическом состоянии. Так, например, многие органические соединения могут существовать в амидной, имидной и других таутомерных формах. Причем нередко в зависимости от условий получения, очистки и хранения лекарственное вещество может представлять собой смесь двух таутомеров или других изомеров, в том числе оптических, различающихся по фармакологической активности.
Вторая группа факторов — образование различных кристаллических модификаций, или полиморфизм. Около 65% лекарственных веществ, относящихся к числу барбитуратов, стероидов, антибиотиков, алкалоидов и др., образуют по 1—5 и более различных модификаций. Остальные дают при кристаллизации стабильные полиморфные и псевдополиморфные модификации. Они различаются не только по физико-химическим свойствам (температуре плавления, плотности, растворимости) и фармакологическому действию, но имеют различную величину свободной поверхностной энергии, а следовательно, неодинаковую устойчивость к действию кислорода воздуха, света, влаги. Это вызвано изменениями энергетических уровней молекул, что оказывает влияние на спектральные, термические свойства, растворимость и абсорбцию лекарственных веществ. Образование полиморфных модификаций зависит от условий кристаллизации, используемого при этом растворителя, температуры. Превращение одной полиморфной формы в другую происходит при хранении, сушке, измельчении.
В лекарственных веществах, получаемых из растительного и животного сырья, основными примесями являются сопутствующие природные соединения (алкалоиды, ферменты, белки, гормоны и др.). Многие из них очень сходны по химическому строению и физико-химическим свойствам с основным продуктом экстракции. Поэтому очистка его представляет большую сложность.
Большое влияние на загрязнение примесями одних лекарственных препаратов другими может оказать запыленность производственных помещений химико-фармацевтических предприятий. В рабочей зоне этих помещений при условии получения одного или нескольких препаратов (лекарственных форм) все они могут содержаться в виде аэрозолей в воздухе. При этом происходит так называемое "перекрестное загрязнение".
Всемирной организацией здравоохранения (ВОЗ) в 1976 г. были разработаны специальные правила организации производства и контроля качества лекарственных средств, которые предусматривают условия предотвращения "перекрестного загрязнения".
Важное значение для качества лекарств имеют не только технологический процесс, но и условия хранения. На доброкачественность препаратов оказывает влияние излишняя влажность, которая может привести к гидролизу. В результате гидролиза образуются основные соли, продукты омыления и другие вещества с иным характером фармакологического действия. При хранении препаратов-кристаллогидратов (натрия арсенат, меди сульфат и др.) необходимо, наоборот, соблюдать условия, исключающие потерю кристаллизационной воды.
При хранении и транспортировке препаратов необходимо учитывать воздействие света и кислорода воздуха. Под влиянием этих факторов может происходить разложение, например, таких веществ, как хлорная известь, серебра нитрат, иодиды, бромиды и т.д. Большое значение имеет качество тары, используемой для хранения лекарственных препаратов, а также материал, из которого она изготовлена. Последний тоже может быть источником примесей.
Таким образом, примеси, содержащиеся в лекарственных веществах, можно разделить на две группы: примеси технологические, т.е. внесенные исходным сырьем или образовавшиеся в процессе производства, и примеси, приобретенные в процессе хранения или транспортировки, под воздействием различных факторов (теплоты, света, кислорода воздуха и т.д.).
Содержание тех и других примесей должно строго контролироваться, чтобы исключить присутствие токсичных соединений или наличие индифферентных веществ в лекарственных средствах в таких количествах, которые мешают их использованию для конкретных целей. Иными словами, лекарственное вещество должно иметь достаточную степень чистоты, а следовательно, отвечать требованиям определенной спецификации.
Лекарственное вещество является чистым, если дальнейшая очистка не меняет его фармакологической активности, химической стабильности, физических свойств и биологической доступности.
В последние годы в связи с ухудшением экологической обстановки на наличие примесей тяжелых металлов испытывают и лекарственное растительное сырье. Важность проведения таких испытаний вызвана тем, что при проведении исследований 60 различных образцов растительного сырья установлено содержание в них 14 металлов, в том числе таких токсичных, как свинец, кадмий, никель, олово, сурьма и даже таллий. Их содержание в большинстве случаев значительно превышает установленные ПДК для овощей и фруктов.
Фармакопейный тест на определение примесей тяжелых металлов — один из широко применяемых во всех национальных фармакопеях мира, которые рекомендуют его для исследования не только индивидуальных лекарственных веществ, но и масел, экстрактов, ряда инъекционных лекарственных форм. По мнению Комитета экспертов ВОЗ, такие испытания следует проводить в отношении лекарственных средств, имеющих разовые дозы не менее 0,5 г.
1.5 Общие требования к испытаниям на чистоту
Оценка степени чистоты лекарственного препарата — один из важных этапов фармацевтического анализа. Все лекарственные препараты независимо от способа получения испытывают на чистоту. При этом устанавливают содержание примесей. Их
8-09-2015, 20:00