Цитология, эмбриология, общая гистология

Луганский национальный аграрный университет

Цитология, эмбриология, общая гистология

(курс лекций)

Луганск - 2005


Цитология, эмбриология, общая гистология

Курс лекций составлен заведующим кафедрой биологии животных, доктором биологических наук, профессором Г.Д. Кацы.

Издание 2-е, переработанное и дополненное.

Лекции подготовлены для студентов зообиотехнологического и факультета ветеринарной медицины Луганского национального аграрного университета. Искренне благодарю аспиранта кафедры биологии животных Крыцю Я.П. и заведующую лабораторией Есауленко В.П. за помощь при подготовке материала к изданию.


Введение в гистологию

1. Предмет гистологии и её место в системе биологических и ветеринарных наук.

2. История и методы микроскопических исследований.

3. Клеточная теория, основные положения.

1. Специфика сельскохозяйственного производства обусловлена тем: что несмотря на возрастание роли технических факторов: главными орудиями и средствами производства остаются биологические объекты. По охвату объектов изучения и по своей глубине ветеринария представляет: как говорил академик К.И.Скрябин, интереснейшую область человеческого знания: в которой исследуется и охраняется такое множество представителей животного царства.

Цитология, гистология и эмбриология, наряду с физиологией, биохимией и другими науками формирует фундамент современной ветеринарии.

Гистология (греч. histos-ткань, logos-учение)- наука о развитии, строении и жизнедеятельности тканей животных организмов. Современная гистология изучает структуры организма животных и человека в связи с происходящими в них процессами, раскрывает соотношения между функцией и структурой и т.д.

Гистологию делят на 3 основных раздела: цитологию, или учение о клетке; эмбриологию, или учение о зародыше и гистологию общую и частную, или учение о тканях, о микроскопическом строении органов, их клеточном и тканевом составе.

Гистология тесно связана с рядом биологических и ветеринарных наук - общей и сравнительной анатомией, физиологией, патологической физиологией и патологической анатомией, а также некоторыми клиническими дисциплинами (внутренние болезни, акушерство и гинекология и др.).

Будущим врачам необходимо хорошее знание строения клеток и тканей органов, являющихся структурной основой всех видов жизнедеятельности организма. Значимость гистологии, цитологии и эмбриологии для врачей возрастает ещё потому, что для современной ветеринарной медицины характерно широкое применение цитологических и гистологических методов при проведении анализов крови, костного мозга, биопсии органов и пр.

2. Понятие ткань впервые было введено в биологию блестящим молодым французским ученым анатомом и физиологом Ксавье Биша (Bichat, 1771-1802), на которого произвела такое сильное впечатление разнообразная текстура различных слоев и структур, обнаруженных им при анатомических исследованиях, что он написал книгу о тканях организма, дав в ней название более чем 20 их видам.

Термин “”гистология” не принадлежит Биша, хотя его и можно считать первым гистологом. Термин “гистология” через 17 лет после смерти Биша предложил немецкий исследователь Мейер.

Ткань есть филогенетически обусловленная элементарная система, объединенная общей стуктурой, функцией и развитием (А.А. Заварзин).

Успехи гистологии с момента зарождения и по настоящее время прежде всего связаны с развитием техники, оптики и методов микроскопирования. Историю гистологии можно разделить на три периода: 1-й - домикроскопический (продолжительность около 2000 лет), 2-й - микроскопический (около 300 лет), 3-й - электронно-микроскопический (около 40 лет).

В современной гистологии, цитологии и эмбриологии применяются разнообразные методы исследования, позволяющие всесторонне изучать процессы развития, строения и функции клеток, тканей и органов.

Объектами исследования служат живые и мертвые (фиксированные) клетки и ткани, их изображения, полученные в световых и электронных микроскопах или на телевизионном экране. Существует ряд методов, позволяющих проводить анализ указанных объектов:

1) методы исследования живых клеток и тканей: а) прижизненное исследование клеток в организме (in vivo) - с помощью методов вживления прозрачных камер в организм животных, методом трансплантации;

б) исследование живых структур в культуре клеток и тканей (in vitro) - недостатки: утрачивается взаимосвязь с другими клетками и тканями, действие комплекса нейрогуморальных факторов регуляции и другое;

в) витальное и суправитальное окрашивание, то есть прижизненное окрашивание и окрашивание живых клеток, выделенных из организма.

2) исследование мертвых клеток и тканей; основным объектом исследования здесь являются гистологические препараты, приготовляемые из фиксированных структур.

Процесс изготовления гистопрепарата для световой и электронной микроскопии включает следующие основные этапы: 1) взятие материала и его фиксация, 2) уплотнение материала, 3) приготовление срезов, 4) окрашивание или контрастирование цвета. Для световой микроскопии необходим ешё один этап - заключение срезов в бальзам или другие прозрачные среды (5).

3) исследование химического состава и метаболизма клеток и тканей:

- цито- и гистохимические методы,

- метод радиоавтографии, в основе которого лежит использование радиоактивных элементов (например, фосфора-32Р, углерода -14С, серы-35S, водорода-3Н) или меченных им соединений.

- метод дифференциального центрифугирования - метод основан на применении центрифуг, дающих от 20 до 150 тыс. оборотов в минуту. При этом отделяются и осаждаются различные компоненты клеток и определяется их химический состав. - интерферометрия - метод позволяет оценить сухую массу и концентрацию плотных веществ в живой и фиксированной клетках. - количественные гистохимические методы - цитоспектрофотометрия - метод количественного изучения внутриклеточных веществ по их абсорбционным свойствам. Цитоспектрофлюориметрия - метод изучения внутриклеточных веществ по спектрам их флюорисценции.

4) методы иммунофлюорисцентного анализа. Они применяются для изучения процессов дифференцировки клеток, выявления в них специфических химических соединений и структур. Они основаны на реакциях антиген-антитело.

Методы микроскопирования гистологических препаратов:

- световая микроскопия: а) ультрафиолетовая, б) флюоресцентная (люминисцентная).

- электронная микроскопия: а) просвечивающая, б) сканирование (считывание). Первая дает лишь плоскостное изображение, вторая - пространственное; главным достоинством последнего (растрового) является большая глубина резкости (в 100-1000 раз больше, чем у световых микроскопов), широкий диапазон непрерывного изменения увеличения (от десятков до десятков тысяч раз) и высокая разрешающая способность.

3. Организм высших животных состоит из микроскопических элементов - клеток и ряда их производных - волокон, аморфного вещества.

Значение клетки в многоклеточном организме определяется тем, что через неё передается наследственная информация, с неё начинается развитие многоклеточных животных; благодаря деятельности клеток образуются неклеточные структуры и основное вещество, которые вместе с клетками образуют ткани и органы, выполняющие специфические функции в сложном организме. Создателем клеточной теории следует считать Дютроше (1824, 1837) и Шванна (1839).

Дютроше (1776-1847) - зоолог, ботаник, морфолог, физиолог. В 1824 г. он опубликовал свою книгу “”Анатомические и физиологические исследования о тонком строении животных и растений, а также о их подвижности”.

Созданию клеточной теории предшествовали следующие открытия. В 1610 году 46-летний проф. матетатики Падуанского университета Г.Галилей сконструировал микроскоп. В 1665 г. Роберт Гук открыл клетку при увеличении 100 х. Его современник, Феличе Фонтана говорил: “”...Посмотреть в микроскоп может каждый, но лишь немногие могут судить о виденном”. “”Микрография” Гука включала 54 наблюдения, в т.ч.”Наблюдение 18. О схематизме или строении пробки или о клетках и порах в некоторых других рыхлых телах”.

Из истории. Компания живших в Лондоне молодых людей (студентов) в 1645 г. стала собираться каждый день после занятий, чтобы обсуждать проблемы экспериментальной философии. Среди них были Роберт Бойль (18 лет), Р.Гук (17 лет), Рэн (23 года) и др. Так зародилась Британская академия, затем Лондонское Королевское общество (Карл II был её почетным членом).

Животную клетку открыл Антон ван Левенгук (1673-1695). Жил он в Делфте и торговал сукном. Свои микроскопы довел до 275 х. Петру I показывал кровообращение в хвосте личинки угря.

В настоящее время клеточная теория гласит: 1) клетка является наименьшей единицей живого, 2) клетки разных организмов сходны по своему строению, 3) размножение клеток происходит путем деления исходной клетки, 4) многоклеточные организмы представляют собой сложные ансамбли клеток и их производных, объединенные в целостные интегрированные системы тканей и органов, подчиненные и связанные между собой межклеточными, гуморальными и нервными формами регуляции.

Клетка - элементарная единица живого

1. Состав и физико-химические свойства живого вещества.

2. Типы клеток. Теории происхождения эукариотической клетки.

3. Клеточные мембраны, их молекулярный состав и функции.


1. Типичную клетку с ядром, цитоплазмой и всеми содержащимися в ней органеллами еще нельзя считать наименьшей единицей живого вещества, или протоплазмы (греч. “протос” -первый, “плазма” -образование). Существуют и более примитивные или более просто организованные единицы жизни - так называемые прокариотические организмы (греч. “карион” - ядро), к которым относится большинство вирусов, бактерии и некоторые водоросли; у них в отличие от клеток высшего типа с настоящим ядром (эукариотические клетки) отсутствует ядерная оболочка и ядерное вещество смешивается или непосредственно соприкасается с остальной протоплазмой.

В состав живого вещества входят белки, нуклеиновые кислоты (ДНК и РНК), полисахариды и липиды. Химические компоненты клетки можно разделить на неорганические (вода и минеральные соли) и органические (белки, углеводы, нуклеиновые кислоты, липиды и т.д.).

Цитоплазма растительной и животной клетки содержит 75-85 % воды, 10-20 % белка, 2-3 % липидов, 1 % углеводов и 1 % неорганических веществ.

ДНК - это молекула (её содержится 0,4 %), которая содержит генетическую информацию, направляющую синтез специфических клеточных белков. На одну молекулу ДНК приходится около 44 молекул РНК, 700 молекул белка и 7000 молекул липидов.

Первичная структура РНК подобна структуре ДНК, за исключением того, что РНК содержит рибозу и вместо тимина урацил. В настоящее время установлено, что существуют различающиеся молекулярным весом и другими свойствами три типа РНК: рибосомная, информационная и транспортная. Эти три типа РНК синтезируются в ядре и участвуют в синтезе белка.

2. Шаттон (1925) разделил все живые организмы на два типа (клистера) - прокариоты и эукариоты. Они дивергировали в докембрии (600-4500 млн. лет назад). Существуют две концепции происхождения эукариотической клетки: экзогенная (симбиотическая) и эндогенная. Первая основана на признании принципа объединения разных прокариотных организмов друг с другом. Эндогенная концепция основана на принципе прямой филиации, т.е. последовательного эволюционного преобразования прокариотных организмов в эукариотные.

В организме млекопитающих гистологи насчитывают около 150 типов клеток, и большинство из них приспособлено к выполнению какой-то одной определенной задачи. Форма и строение клетки зависят от выполняемой ею функции.

Функции клеток: раздражимость, сократимость, секреция, дыхание, проводимость, поглощение и усвоение, экскреция, рост и размножение.

3. Любую клетку отграничивает плазматическая мембрана. Она настолько тонка, что её невозможно различить под световым микроскопом. Плазматическая мембрана, легко поврежденная микроиглой, способна к восстановлению, но при более грубом повреждении, особенно в отсутствие ионов кальция, цитоплазма вытекает через прокол наружу и клетка погибает.

Согласно современной теории, плазматическая мембрана состоит из бислоя полярных липидов и встроенными в него молекулами глобулярных белков. Благодаря этим слоям мембрана, обладает эластичностью и относительной механической прочностью. Плазматическая мембрана большинства типов клеток состоит из трёх слоёв шириной примерно 2,5 нм каждый. Подобная структура, называемая “элементарной мембраной”, обнаружена и в большинстве внутриклеточных мембран. Биохимический анализ показал, что липиды и белки содержаться в них в отношении 1.0 : 1.7. Белковый компонент, названный строматином, представляет собой кислый фибриллярный белок с высоким молекулярным весом. Основную массу липидных компонентов образуют фосфолипиды, преимущественно лецитин и кефалин.

Плазмолемма - оболочка клетки, выполняющая отграничительную, транспортную и рецепторную функции. Она обеспечивает механическую связь клеток и межклеточные взаимодействия, содержит клеточные рецепторы гормонов и других сигналов окружающих клетку среды, осуществляет транспорт веществ в клетку из клетки как по градиенту концентраций - пассивный перенос, так и с затратами энергии против градиента концентраций - активный перенос.

В состав оболочки входят плазматическая мембрана, немембранный комплекс - гликокалекс и субмембранный опорно-сократительный аппарат.

В гликокалексе содержится около 1 % углеводов, молекулы которых образуют длинные ветвящиеся цепи полисахаридов, связанные с белками мембраны. Находящиеся в гликокалексе белки - ферменты участвуют в конечном внеклеточном расщеплении веществ. Продукты этих реакций в виде мономеров поступают в клетку. При активном переносе транспорт веществ в клетку осуществляется или поступлением молекул в виде раствора - пиноцитоз, или захватом крупных частиц - фагоцитоз.

В соответствии с функциональными и морфологическими особенностями тканей оболочка клеток образует характерные для них аппараты межклеточных контактов. Основные их формы: простой контакт (или зона слипания), плотный (замыкающий) и щелевой контакт. Разновидностью плотного контакта являются десмосомы.

Биологичекие мембраны действуют как диффузные барьеры. Благодаря своей избирательной проницаемости для ионов К+, Nа+, Cl- и т.п., а также высокомолекулярных соединений они разграничивают внутри- и межклеточные зоны реакций и создают электрические градиенты и градиенты концентрации веществ. Это делает возможным существование упорядоченных биологических структур со специфическими функциями.

Проникновение веществ в клетку называется эндоцитозом. Но существует и экзоцитоз. Например, от аппарата Гольджи отшнуровываются секреторные пузырьки, мигрирующие по направлению к клеточной мембране и выбрасывающие наружу своё содержимое. При этом мембрана пузырька сливается с гомологичной ей клеточной мембраной.

На основании электронно-микроскопических данных можно предположить, что плазмолемма является продуктом аппарата Гольджи. От этой органеллы в виде непрерывно отделяющихся пузырьков постоянно идет транспорт мембранного материала (“”поток мембран”), восстанавливающего использованные участки плазмолеммы и обеспечивающего её рост после деления клетки.

Мембрана является носителем видоспецифических и специфических для клетки поверхностных свойств, связанных с характерным распределением на ней гликозаминогликанов и белков. Их молекулы могут также покрывать поверхность клеток в виде тончайших пленок и образовывать межклеточный матрикс между соседними клетками. Контактные свойства клеток и иммунные реакции определяются этими компонентами мембран.

У многих клеток, особенно у специализированных для всасывания (кишечный эпителий), на наружной стороне имеются волосовидные выросты - микроворсинки. Образуемая или “щеточная каемка” несет ферменты, принимает участие в расщеплении веществ и транспортных процессах. На базальной стороне клеток, специализированных на интенсивное пропускание жидкости (при осморегуляции), например, в эпителии почечных канальцев и мальпигиевых сосудов, мембрана образует множественные впячивания, составляющие базальный лабиринт. Продукт клеточной секреции, базальная мембрана, часто отграничивает эпителий от глубже лежащих клеточных слоёв.

Особые мембранные структуры возникают в местах соприкосновения соседних клеток. Там имеются области, где мембраны так тесно прилегают друг к другу, что не остаётся места для межклеточного вещества (плотный контакт). В других участках возникают сложные контактные органеллы - десмосомы. Они и другие контактные структуры служат для механического соединения и главное - обеспечивают химическую и электрическую интеграцию соседних клеток, облегчая межклеточный ионный транспорт благодаря своему низкому электрическому сопротивлению.

Строение животной клетки

1. Цитоплазма и органеллы, их функция.

2. Ядро, его строение и функции.

3. Типы деления, фазы клеточного цикла.

1. Цитоплазма, отделенная от окружающей среды плазмолеммой, включает в себя гиалоплазму, находящиеся в ней обязательные клеточные компоненты - органеллы, а также различные непостоянные структуры – включения (рис.1).

Гиалоплазма (hyalinos - прозрачный) - основная плазма, или матрикс цитоплазмы, представляет собой очень важную часть клетки, её истинную внутреннюю среду.

В электронном микроскопе матрикс имеет вид гомогенного и тонкозернистого вещества с низкой электронной плотностью. Гиалоплазма является сложной коллоидной системой, включающей в себя различные биополимеры: белки, нуклеиновые кислоты, полисахариды и др. Эта система способна переходить из золеобразного (жидкого) состояния в гелеобразное и обратно. В состав гиалоплазмы входят главным образом различные глобулярные белки. Они составляют 20-25% общего содержания белков в эукариотической клетке. К важнейшим ферментам гиалоплазмы относятся ферменты метаболизма сахаров, азотистых оснований, аминокислот, липидов и других важных соединений. В гиалоплазме располагаются ферменты активации аминокислот при синтезе белков, транспортные РНК (тРНК). В гиалоплазме при участии рибосом и полирибосом происходит синтез белков, необходимых для собственно клеточных нужд, для поддержания и обеспечения жизни данной клетки.

Органеллы - постоянно присутствующие и обязательные для всех клеток микроструктуры, выполняющие жизненно важные функции.

Различают мембранные органеллы - митохондрии, эндоплазматическую сеть (гранулярная и гладкая), аппарат Гольджи, лизосомы, к категории мембранных органелл относится и плазмолемма; н е м ембранные органеллы: свободные рибосомы и полисомы, микротрубочки, центриоли и филаменты (микрофиламенты). Во многих клетках органеллы могут принимать участие в образовании особых структур, характерных для специализированных клеток. Так, реснички и жгутики образуются за счет центриолей и плазматической мембраны, микроворсинки - это выросты плазматической мембраны с гиалоплазмой и микрофиламентами, акросома спермиев - это производное элементов аппарата Гольджи и пр.

Рис 1. Ультрамикроскопическое строение клетки животных организмов (схема)

1 – ядро; 2 – плазмолемма; 3 – микроворсинки; 4 – агранулярная эндоплазматическая сеть; 5 - гранулярная эндоплазматическая сеть; 6 – аппарат Гольджи; 7 – центриоль и микротрубочки клеточного центра; 8 – митохондрии; 9 – цитоплазматические пузырьки; 10 – лизосомы; 11 – микрофиламенты; 12 – рибосомы; 13 – выделение гранул секрета.


Мембранные органеллы представляют собой одиночные или связанные друг с другом отсеки цитоплазмы, отграниченные мембраной от окружающей их гиалоплазмы, имеющие своё собственное содержимое, отличное по составу, свойствам и функциям:

Митохондрии - органеллы синтеза АТФ. Их основная функция связана с окислением органических соединений и использованием освобождающейся при распаде этих соединений энергии для синтеза молекул АТФ. Митохондрии ещё называют энергетическими станциями клетки, или органеллами клеточного дыхания.

Термин “”митохондрия” был введён Бенда в 1897 году. Митохондрии можно наблюдать в живых клетках, т.к. они обладают достаточно высокой плотностью. В живых клетках митохондрии могут перемещаться, сливаться друг с другом, делиться. Форма и размеры митохондрий животных клеток разнообразны, но в среднем толщина их около 0,5 мкм, а длина - от 1 до 10 мкм. Количество их в клетках сильно варьирует - от единичных элементов до сотен. Так, в клетке печени они составляют более 20% общего объема цитоплазмы. Площадь поверхности всех митохондрий печеночной клетки в 4-5 раз больше поверхности её плазматической мембраны.

Митохондрии ограничены двумя мембранами толщиной около 7 нм.


8-09-2015, 23:35


Страницы: 1 2 3 4 5 6 7
Разделы сайта