Цитология, эмбриология, общая гистология

Наружная митохондриальная мембрана ограничивает собственно внутреннее содержимое митохондрии, её матрикс. Характерной чертой внутренних мембран митохондрий является их способность образовывать многочисленные впячивания внутрь митохондрий. Такие впячивания чаще имеют вид плоских гребней, или крист. Нити матрикса митохондрий представляют собой молекулы ДНК, а мелкие гранулы - митохондриальные рибосомы.

Эндоплазматическая сеть была открыта К.Р. Портером в 1945 г. Эта органелла представляет собой совокупность вакуолей, плоских мембранных мешков или трубчатых образований, создающих как бы мембранную сеть внутри цитоплазмы. Различают два типа - гранулярную и гладкую эндоплазматическую сеть.

Гранулярная эндоплазматическая сеть представлена замкнутыми мембранами, отличительной чертой которых является то, что они со стороны гиалоплазмы покрыты рибосомами. Рибосомы участвуют в синтезе белков, выводимых из данной клетки. Кроме того, гранулярная эндоплазматическая сеть принимает участие в синтезе белков-ферментов, необходимых для организации внутриклеточного метаболизма, а также используемых для внутриклеточного пищеварения.

Белки, накапливающиеся в полостях сети, могут, минуя гиалоплазму, транспортироваться в вакуоли комплекса Гольджи, где они часто модифицируются и входят в состав либо лизосом, либо секреторных гранул.

Роль гранулярной эндоплазматической сети заключается в синтезе на её полисомах экспортируемых белков, в их изоляции от содержимого гиалоплазмы внутри мембранных полостей, в транспорте этих белков в другие участки клетки, а также в синтезе структурных компонентов клеточных мембран.

Агранулярная (гладкая) эндоплазматическая сеть также представлена мембранами, образующими мелкие вакуоли и трубки, канальцы, которые могут ветвиться друг с другом. В отличие от гранулярной эндоплазматической сети на мембранах гладкой эндоплазматической сети нет рибосом. Диаметр вакуолей и канальцев обычно около 50-100 нм.

Гладкая эндоплазматическая сеть возникает и развивается за счет гранулярной эндоплазматической сети.

Деятельность гладкой ЭПС связана с метаболизмом липидов и некоторых внутриклеточных полисахаридов. Гладкая ЭПС участвует в заключительных этапах синтеза липидов. Она сильно развита в клетках, секретирующих стероиды в корковом веществе надпочечников и сустентоцитах ( клетки Сертоли) семенников.

В поперечнополосатых мышечных волокнах гладкая ЭПС способна депонировать ионы кальция, необходимые для функции мышечной ткани.

Очень важна роль гладкой ЭПС в дезактивации различных вредных для организма веществ.

Комплекс Гольджи (КГ). В 1898 г. К. Гольджи, используя свойства связывания тяжелых металлов с клеточными структурами, выявил в нервных клетках сетчатые образования, которые он назвал внутренним сетчатым аппаратом.

Он представлен мембранными структурами, собранными вместе в небольшой зоне. Отдельная зона скопления этих мембран называется диктиосомой. Таких зон в клетке может быть несколько. В диктиосоме плотно друг к другу (на расстоянии 20-25 нм) расположены 5-10 плоских цистерн, между которыми располагаются тонкие прослойки гиалоплазмы. Кроме цистерн в зоне КГ наблюдается множество мелких пузырьков (везикул). КГ участвует в сегрегации и накоплении продуктов, синтезированных в цитоплазматической сети, в их химических перестройках, созревании; в цистернах КГ происходит синтез полисахаридов, их комплексирование с белками и, главное, выведение готовых секретов за пределы клетки.

Лизосомы - это разнообразный класс шаровидных структур размером 0,2-0,4 мкм, ограниченных одиночной мембраной.

Характерным признаком лизосом является наличие в них гидролитических ферментов, расщепляющих различные биополимеры. Лизосомы были открыты в 1949 г. де Дьювом.

Пероксисомы - небольшие размером 0,3-1,5 мкм овальной формы тельца, ограниченные мембраной. Они особенно характерны для клеток печени, почек. Ферменты окисления аминокислот образуют перекись водорода, который разрушается ферментом каталаза. Каталаза пероксисом играет важную защитную роль, так как Н2О2 является токсическим веществом для клетки.


Немембранные органеллы

Рибосомы - элементарные аппараты синтеза белковых, полипептидных молекул - обнаруживаются во всех клетках. Рибосомы - это сложные рибонуклеопротеиды, в состав которых входят белки и молекулы РНК. Размер функционирующей рибосомы эукариотических клеток 25 х 20 х 20 нм.

Различают единичные рибосомы и комплексные рибосомы (полисомы). Рибосомы могут располагаться свободно в гиалоплазме и быть связанными с мембранами эндоплазматической сети. Свободные рибосомы образуют белки в основном на собственные нужды клетки, связанные обеспечивают синтез белков “” на экспорт”.

Микротрубочки относятся к фибриллярным компонентам белковой природы. В цитоплазме они могут образовывать временные образования (веретено деления). Микротрубочки входят в состав центриолей, а также являются основными структурными элементами ресничек и жгутиков. Они представляют собой прямые, неветвящиеся длинные полые цилиндры. Их внешний диаметр составляет около 24 нм, внутренний просвет - 15 нм, толщина сетки - 5 нм. Микротрубочки содержат белки - тубулины. Создавая внутриклеточный скелет, микротрубочки могут быть факторами ориентированного движения клетки в целом и её внутриклеточных компонентов, создавая факторы направленных потоков разных веществ.

Центриоли. Термин был предложен Т. Бовери в 1895 г. для обозначения очень мелких телец. Центриоли обычно расположенные в паре - диплосома, окружены зоной более светлой цитоплазмы, от которой отходят радиально тонкие фибриллы (центросфера). Совокупность центриолей и центросферы называют клеточным центром. Эти органеллы в делящихся клетках принимают участие в формировании веретена деления и располагаются на его полюсах. В неделящихся клетках располагаются вблизи КГ.

Основой строения центриолей являются расположенные по окружности 9 триплетов микротрубочек, образующих таким образом полый цилиндр. Его ширина около 0,2 мкм, а длина 0,3-0,5 мкм.

Кроме микротрубочек в состав центриоли входят дополнительные структуры - “”ручки”, соединяющие триплеты. Системы микротрубочек центриоли можно описать формулой: (9 х 3) + 0, подчеркивая отсутствие микротрубочек в её центральной части.

При подготовке клеток к митотическому делению происходит удвоение центриолей.

Полагают, что центриоли участвуют в индукции полимеризации тубулином при образовании микротрубочек. Перед митозом центриоль является одним из центров полимеризации микротрубочек веретена клеточного деления.

Реснички и жгутики. Это специальные органеллы движения. В основании ресничек и жгутика в цитоплазме видны мелкие гранулы - базальные тельца. Длина ресничек 5-10 мкм, жгутиков - до 150 мкм.

Ресничка представляет собой тонкий цилиндрический вырост цитоплазмы с диаметром 200 нм. Он покрыт плазматической мембраной. Внутри расположена аксонема (“осевая нить”), состоящая из микротрубочек.

Аксонема в своём составе имеет 9 дуплетов микротрубочек. Здесь систему микротрубочек реснички опмсывают (9 х 2) + 2.

Свободные клетки, имеющие реснички и жгутики, обладают способностью двигаться. Способ их движения “”скользящие нити”.

К фибриллярным компонентам цитоплазмы относятся микрофиламенты толщиной 5-7 нм и так называемые промежуточные филаменты, микрофибриллы, толщиной около 10 нм.

Микрофиламенты встречаются во всех типах клеток. По строению и функциям они бывают разные, но отличить их морфологически друг от друга трудно. Химический состав их разный. Они могут выполнять функции цитоскелета и участвовать в обеспечении движения внутри клетки.

Промежуточные филаменты тоже белковые структуры. В эпителии в их состав входит кератин. Пучки филаментов образуют тонофибриллы, которые подходят к десмосомам. Роль промежуточных микрофиламентов скорее всего опорно-каркасная.

Включения цитоплазмы. Это необязательные компоненты клетки, возникающие и исчезающие в зависимости от метаболического состояния клеток. Различают включения трофические, секреторные, экскреторные и пигментные. Трофические включения - это нейтральные жиры и гликоген. Пигментные включения могут быть экзогенные (каротин, красители, пылевые частицы и др.) и эндогенные (гемоглобин, меланин и др.). Наличие их в цитоплазме может изменять цвет ткани. Нередко пигментация ткани служит диагностическим признаком.

Ядро обеспечивает две группы общих функций: одну, связанную собственно с хранением и передачей генетической информации, другую - с её реализацией, с обеспечением синтеза белка.

В ядре происходит воспроизведение или редупликация молекул ДНК, что дает возможность при митозе двум дочерним клеткам получить совершенно одинаковые в качественном и количественном отношении объемы генетической информации.

Другой группой клеточных процессов, обеспечиваемых активностью ядра, является создание собственного аппарата белкового синтеза. Это не только синтез, транскрипция на молекулах ДНК разных информационных РНК, но и транскрипция всех видов транспортных и рибосомальных РНК.

Таким образом, ядро является не только вместилищем генетического материала, но и местом, где этот материал функционирует и воспроизводиться.

Ядро неделящейся, интерфазной клетки обычно одно на клетку. Ядро состоит из хроматина, ядрышка, кариоплазмы (нуклеоплазмы) и ядерной оболочки, отделяющей его от цитоплазмы (кариолеммы).

Кариоплазма или ядерный сок - микроскопически бесструктурное вещество ядра. Он содержит различные белки (нуклеопротеиды, гликопротеиды), ферменты и соединения, участвующие в процессах синтеза нуклеиновых кислот, белков и др. веществ, входящих в состав кариоплазмы. Электронно - микроскопически в ядерном соке выявляют рибонуклеопротеидные гранулы 15 нм в диаметре.

В ядерном соке выявлены также гликолитические ферменты, участвующие в синтезе и расщеплении свободных нуклеотидов и их компонентов, энзимы белкового и аминокислотного обмена. Сложные процессы жизнедеятельности ядра обеспечиваются энергией, освобождающейся в процессе гликолиза, ферменты которого содержатся в ядерном соке.

Хроматин. В состав хроматина входит ДНК в комплексе с белком. Такими же свойствами обладают и хромосомы, которые отчетливо видны во время митотического деления клеток. Хроматин интерфазных ядер представляет собой хромосомы, которые теряют в это время свою компактную форму, разрыхляются, деконденсируются. Зоны полной деконденсации называются эухроматином; неполного разрыхления хромосом - гетерохроматином. Максимально конденсирован хроматин во время митотического деления клеток, когда он обнаруживается в виде плотных хромосом.

Ядрышко. Это одно или несколько округлой формы тельца величиной 1-5 мкм, сильно преломляющих свет. Его ещё называют нуклеолой. Ядрышко - самая плотная структура ядра - является производным хромосомы.

В настоящее время известно, что ядрышко - это место образования рибосомальных РНК и полипептидных цепей в цитоплазме.

Ядрышко неоднородно по своему строению: в световом микроскопе можно видеть его тонковолокнистую организацию. В электронном микроскопе выделяют два основных компонента: гранулярный и фибриллярный. Фибриллярный компонент - это рибонуклеопротеидные тяжи предшественников рибосом, гранулы - созревающие субъединицы рибосом.

Ядерная оболочка состоит из внешней ядерной мембраны и внутренней мембраны оболочки, разделенных перинуклеарным пространством. Ядерная оболочка содержит ядерные поры. Мембраны ядерной оболочки в морфологическом отношении не отличаются от остальных внутриклеточных мембран.

Поры имеют диаметр около 80-90 нм. Поперёк поры имеется диафрагма. Размеры пор у данной клетки обычно стабильны. Число пор зависит от метаболической активности клеток: чем интенсивнее синтетические процессы в клетках, тем больше пор на единицу поверхности клеточного ядра.

Хромосомы. Как интерфазные, так и митотические хромосомы состоят из элементарных хромосомных фибрилл - молекул ДНК.

Морфологию митотических хромосом лучше всего изучать в момент их наибольшей конденсации, в метафазе и в начале анафазы. Хромосомы в этом состоянии представляют собой палочковидные структуры разной длины и довольно постоянной толщины. У большинства хромосом удается легко найти зону первичной перетяжки (центромеры), которая делит хромосому на два плеча. Хромосомы с равными или почти равными плечами называют метацентрическими, с плечами неодинаковой длины - субметацентрическими. Палочковидные хромосомы с очень коротким, почти незаметным вторым плечом называют акроцентрическими. В области первичной перетяжки расположен кинетохор. От этой зоны во время митоза отходят микротрубочки клеточного веретена. Некоторые хромосомы имеют, кроме того, вторичные перетяжки, располагающиеся вблизи одного из концов хромосомы и отделяющие маленький участок - спутник хромосом. В этих местах локализована ДНК, ответственная за синтез рибосомальных РНК.

Совокупность числа, размеров и особенностей строения хромосом называют кариотипом данного вида. Кариотип крупного рогатого скота - 60, лошади - 66, свиньи - 40, овцы - 54, человека - 46.

Время существования клетки как таковой, от деления до деления или от деления до смерти называют клеточным циклом (рис.2).

Весь клеточный цикл состоит из 4 отрезков времени: собственно митоза, предсинтетического, синтетического и постсинтетического периодов интерфазы. В период G1 начинается рост клеток за счет накопления клеточных белков, что определяется увеличением количества РНК на клетку. В S - периоде происходит удвоение количества ДНК на ядро и соответственно удваивается число хромосом. Здесь уровень синтеза РНК возрастает соответственно увеличению количества ДНК, достигая своего максимума в G2-периоде. В G2-периоде происходит синтез информационной РНК, необходимой для прохождения митоза. Среди синтезирующихся в это время белков особое место занимают тубулины - белки митотического веретена.

Рис. 2. Жизненный цикл клетки:

М – митоз; G1 - предсинтетический период; S — синтетический период; G2 — постсинтетический период; 1 - старая клетка (2n4c); 2- молодые клетки (2n2c)


Преемственность хромосомного набора обеспечивается клеточным делением, которое называется митозом. Во время этого процесса происходит полная перестройка ядра. Митоз состоит из последовательного ряда стадий, сменяющихся в определенном порядке: профазы, метафазы, анафазы и телофазы. В процессе митоза ядро соматической клетки делится таким образом, что каждая из двух дочерних клеток получает точно такой же набор хромосом, какой имела материнская.

Способность клеток к воспроизведению - важнейшее свойство живой материи. Благодаря этой способности обеспечивается непрерывная преемственность клеточных поколений, сохранение клеточной организации в эволюции живого, совершается рост и регенерация.

По разным причинам (нарушение веретена деления, нерасхождение хроматид и др.) во многих органах и тканях встречаются клетки с крупными ядрами или многоядерные клетки. Это результат соматической полиплоидии. Такое явление называется эндорепродукцией. Чаще полиплоидия встречается у беспозвоночных животных. У некоторых из них распространено и явление политении - построение хромосомы из многих молекул ДНК.

Полиплоидные и политенные клетки не вступают в митоз и могут делиться только амитозом. Смысл данного явления в том, что как полиплоидия - увеличение количества хромосом, так и политения - увеличение количества молекул ДНК в хромосоме приводят к значительному усилению функциональной активности клетки.

Кроме митоза науке известны ешё два типа деления - амитоз (а - без, митоз - нити) или прямое деление и мейоз, который представляет собой процесс уменьшения числа хромосом вдвое путём двух клеточных делений - первого и второго деления мейоза (мейозис - уменьшение). Мейоз характерен для половых клеток.


Гаметогенез, стадии раннего эмбриогенеза

1. Строение половых клеток позвоночных.

2. Сперматогенез и овогенез.

3. Стадии раннего эмбриогенеза.

1. Эмбриология - наука о развитии зародыша. Она изучает индивидуальное развитие животных с момента зарождения (оплодотворение яйцеклетки) до его вылупления или рождения. Эмбриология рассматривает развитие и строение половых клеток и основные этапы эмбриогенеза: оплодотворение, дробление, гаструляцию, закладку осевых органов и органогенез, развитие провизорных (временных) органов.

Достижения современной эмбриологии широко используют в животноводстве, птицеводстве, при разведении рыб; в ветеринарии и медицине при решении многих практических задач, касающихся искусственного осеменения и оплодотворения, технологии ускоренного воспроизводства и селекции; повышения плодовитости с/х животных, размножения животных путем трансплантации эмбрионов, при изучении патологии беременности, при распознавании причин бесплодия и других вопросов акушерства.

По строению половые клетки сходны с соматическими клетками. Они также состоят из ядра и цитоплазмы, построенной из органелл и включений.

Отличительные свойства зрелых гаметоцитов - низкий уровень процессов ассимиляции и диссимиляции, неспособность к делению, содержание в ядрах гаплоидного (половины) числа хромосом.

Половые клетки самцов (спермии) у всех позвоночных имеют жгутиковую форму (рис.3). Образуются они в семенниках в большом количестве. В одной порции выделенного семени (эякулята) содержатся десятки миллионов и даже миллиардов спермиев.

Спермии с/х животных обладают подвижностью. Как размер, так и форма спермиев у разных животных сильно варьирует. Они состоят из головки, шейки и хвостового отдела. Спермии гетерогенны, т. к. в их ядрах содержатся разные типы половых хромосом. Половина спермиев имеет Х-хромосому, другая половина - Y хромосому. Половые хромосомы несут генетическую информацию, определяющую половые признаки самца. От остальных хромосом (аутосом) они отличаются большим содержанием гетерохроматина, размером и строением.

Спермии обладают минимальным запасом питательных веществ, которые очень быстро расходуются при движении клетки. Если не произойдет слияния спермия с яйцеклеткой, то в половых путях самки он обычно погибает через 24-36 часов.

Продлить жизнь спермиев можно замораживанием. Губительно влияют на спермии хинин, алкоголь, никотин и другие наркотические вещества.

Строение яйцеклеток. Размер яйцеклетки гораздо больше спермия. Диаметр овоцитов варьирует от 100 мкм до нескольких мм. Яйцеклетки позвоночных овальной формы, неподвижны, состоят из ядра и цитоплазмы (рис. 4). Ядро содержит гаплоидный набор хромосом. Яйцеклетки млекопитающих относят к гомогаметным, т. к. в их ядре имеется только Х-хромосома. В цитоплазме содержатся свободные рибосомы, эндоплазматическая сеть, комплекс Гольджи, митохондрии, желток и другие компоненты. Овоциты обладают полярностью. В связи с чем в них различают два полюса: апикальный и базальный. Периферический слой цитоплазмы яйцеклетки называют кортикальным слоем (cortex - кора). Он лишен полностью желтка, содержит множество митохондрий.

Яйцеклетки покрыты оболочками. Различают первичную, вторичную и третичную оболочки. Первичная оболочка - это плазмолемма. Вторичная оболочка (прозрачная или блестящая) является производной фолликулярных клеток яичника. Третичные оболочки формируются в яйцеводе у птиц: белок, подскорлуповая и скорлуповая оболочки яйца. По количеству желтка различают яйцеклетки с малым количеством - олиголецитальные (oligos - мало, lecytos - желток), со средним количеством - мезолецитальные (mesos - средний) и с большим количеством - полилецитальные (poli - много).

По месту расположения желтка в цитоплазме различают яйцеклетки с равномерным распределением желтка - изолецитальные, или гомолецитальные, и с локализацией желтка у одного полюса - телолецитальные ( telos - край, конец). Олиголецитальные и изолецитальные яйцеклетки - у ланцетника и млекопитающих, мезолецитальные и телолецитальные - у амфибий, некоторых рыб, полилецитальные и телолецитальные - у многих рыб, пресмыкающихся, птиц.

2. Родоначальниками половых клеток являются первичные половые клетки - гаметобласты (гонобласты). Выявляются они в стенке желточного мешка вблизи кровеносных сосудов. Гонобласты интенсивно делятся митозом и с током крови или по ходу кровеносных сосудов мигрируют в зачатки половых желез, где окружаются поддерживающими (фолликулярными) клетками. Последние выполняют трофическую функцию. Затем, в связи с развитием пола животного, половые клетки приобретают свойства, характерные для спермиев и яйцеклеток.

Развитие спермиев (сперматогенез) протекает в семенниках половозрелого животного. В сперматогенезе различают 4 периода: размножение,


8-09-2015, 23:35


Страницы: 1 2 3 4 5 6 7
Разделы сайта