Антиоксидантная система плазмы крови в норме и при патологии

организмы в процессе эволюции приобрели хорошо сбалансированные механизмы, осуществляющие нейтрализацию окислительного действия кислорода и его активных интермедиатов. Эти механизмы (ферментативные и неферментативные), способные поддерживать и восстанавливать друг друга, объединены в единую антиоксидантную систему, которая осуществляет первичную защиту организма (клеток, тканей). Компоненты этой системы взаимодействуют непосредственно с АФК, то есть, стресс-факторами, способными вызывать окислительную модификацию различных биополимеров. Однако защитный потенциал, которым располагают аэробные организмы, наряду с АОС, включает вторичную антиоксидантную систему защиты, или репаративную систему, компоненты которой начинают функционировать при уже случившихся окислительных повреждених , когда появляется необходимость быстрого удаления и восстановления поврежденных клеточных структур.

К репаративной системе относятся липолитические ферменты (липазы, фосфолипазы), протеазы, пептидазы, ДНК-репаразы, эндо- и экзонуклеазы, лигазы.

В процессах перекисного окисления липидов , _емма_рованных АФК, происходит существенная модификация фосфолипидов плазматической и внутриклеточных мембран. В удалении поврежденных жирнокислотных ацилов мембранных липидов участвуют фосфолипазы А1 и А2, а также фосфолипаза С. Выяснено, что перекисное окисление мембранных липидов может стимулировать липолитическое действие фосфолипазы А2. Исследования показали, что предпочтительными субстратами для данного фермента служат именно перекисные формы фосфолипидов. По-видимому, это может иметь важное значение в процессах мембранной репарации, поскольку предоставляет клетке дополнительную защиту против ПОЛ.

В защите клетки принимают участие и протеолитические ферменты, осуществляющие деградацию окисленных белков, предотвращая тем самым их накопление. В последние годы было установлено, что деградацию окисленных белков осуществляют протеосомы, мультикаталитические протеазные комплексы, состоящие примерно из 28 субъединиц, организованных в цилиндрическую структуру. Комплекс протеаз, селективно деградирующий модифицированные белки (окисленные или помеченные убиквитином), играет главную роль в нелизосомальном расщеплении внутриклеточных белковых молекул. Две главные протеосомы (20S и 26S-частицы) идентифицированы. Только 20S протеосома деградирует окисленные белки. Протеосома содержит три главных активности – трипсиноподобную, химотрипсиноподобную и карбоксипротеазную. Протеолиз протеосомой требует разворачивания полипептидных цепей и транспорта развернутого белка во внутренний активный компартмент комплекса [Tsu-ChungChang,Wei-YuanChou,Gu-GangChang,2000].

1.3. Антиоксиданты плазмы крови

Защита ферментов и белков, в частности липопротеинов, присутствующих в плазме крови, осуществляется внеклеточной АОС. Эта антиоксидантная система, как и клеточная, характеризуется наличием антиоксидантных ферментов и низкомолекулярных биоантиоксидантов и присутствует не только в плазме крови, но и в межклеточной, спинномозговой, синовиальной жидкостях и лимфе.

К высокомолекулярным соединениям, содержащимся в плазме крови и обладающим антиоксидантной активностью, относятся экстрацеллюлярная СОД, каталаза и ГПО, альбумины, церулоплазмин, трансферрин, лактоферрин, ферритин, гаптоглобин и гемопексин (белок, связывающий _емм). По мнению [Halliwell, Gutteridge, 1986] удаление О2- и Н2О2 СОД, каталазой и ГПО вносит небольшой вклад в антиоксидантную активность внеклеточных жидкостей. Авторы считают, что главными защитными системами в плазме являются антиоксидантные белки, связывающие ионы металлов переменной валентности в формы, которые не могут стимулировать свободнорадикальные реакции, либо другим способом, препятствующим ионам металлов принимать участие в таких реакциях. Известно, что церулоплазмин, обладающий ферроксидазной активностью, ингибирует Fe2+-зависимое ПОЛ и образование ·ОН из Н2О2. ЦП считается основным антиоксидантом плазмы крови. Поскольку ЦП неспецифически связывает Cu2+, он тормозит также Cu2+-стимулируемое образование АФК.

К внеклеточной неферментативной АОС в настоящее время относят ураты и билирубин – метаболиты, образующиеся при расщеплении пуриновых нуклеотидов и _емма, а также витамины С, Е и А (каротины), поступающие в организм с пищей.

Компоненты АОС работают в комплексе: ферментативная АОС осуществляет обезвреживание О2- и Н2О2 ингибиторы органических радикалов также участвуют в цепочке взаимопревращений, в результате которых образуется менее активная форма радикала.

ROO·® (токоферол)·® (аскорбат)·® (урат)·

Целесообразность существования таких взаимопревращений заключается в более гибкой регуляции и надежности гомеостазирования свободнорадикальных процессов в клетке [Соколовский, 1988].

Церулоплазмин: структура, свойства, биологическая роль

Церулоплазмин (КФ 1.16.3.1, ферро- О2- оксидоредуктаза, ЦП) – металлогликопротеин a2 – глобулиновой фракции, относится к семейству голубых оксидаз. ЦП – белок с большой молекулярной массой, представленный одной полипептидной цепью, но имеющий несколько изоформ и характеризующийся сложной картиной распределения в тканях, а также разнообразием кооперативных форм участия в метаболизме меди и железа в организме [Мжельская, 2000]. ЦП связывает более 95 % общего количества меди, содержащейся в сыворотке крови. Молекула ЦП состоит из 1046 аминокислотных остатков, содержит около 8 % углеводов и 6-7 атомов меди. Пространственная организация и каталитические свойства ЦП определяются присутствием меди [Василец, 1975]. ЦП – это мультифункциональный белок, одна из главных его функций – медьтранспортная, реализуется при взаимодействии со специфическими рецепторами, локализованными на наружной поверхности плазматических мембран клеток. Установлено существование специфического белка-рецептора на мембранах различных клеток, в том числе и на мембранах эритроцитов человека [Пучкова, Вербина и др. 1991]. Рецепция осуществляется путем связывания терминальных остатков сиаловых кислот эритроцитарной мембраны и остатков маннозы и ацетилглюкозамина углеводной части молекулы ЦП. Известно, что лишь 40 % ЦП содержит углеводный фрагмент способный прочно связываться с рецепторами эритроцитов [Саенко , Ярополов , 1991].

В гепатоцитах синтезируется три молекулярные формы ЦП: две из них – секретируемые (сывороточный ЦП и ЦП с молекулярной массой 200 кД), третья – внутриклеточный несекреторный ЦП-подобный белок с молекулярной массой 50 кД. Помимо печени мРНК ЦП обнаружены в коре головного мозга, мозжечке, гипоталамусе, сосудистом сплетении мозговых желудочков, кишечнике, почках, сердце, ретикулоэндотелиальной системе селезенки и бронхиолярном эпителии человека и лабораторных животных [Мжельская, 2000]

ЦП является одним из основных АО плазмы крови. Особенностью этого белка является высокая стабильность к токсическому действию АФК, что позволяет ему сохранять биологическую активность в условиях интенсивной генерации АФК [Gutteridge, Richmond, Halliwell,1980].

ЦП проявляет как специфическую, так и неспецифическую антиоксидантную активность. Специфическая активность, связанная со снижением уровня активных метаболитов кислорода, может быть реализована несколькими путями. В плазме крови церулоплазмин окисляет Fe2+ до Fe3+, после чего окисленные ионы железа связываются трансферрином и транспортируются в гепатоциты и развивающиеся ретикулоциты. Существенно, что окисление железа ЦП, в отличие от неферментативного окисления Fe2+ в присутствие О2, не сопровождается образованием супероксидного анион – радикала, поэтому в окислительных реакциях с участием ионов железа ЦП оказывается антиоксидантом [Киселев, 1988]. ЦП обладает способностью удалять из крови супероксидные анион-радикалы. Он вызывает дисмутацию О2-, которая имеет не ферментативный, а стехиометрический характер, таким образом происходит восстановление О2- до воды, а не до перекисей, в отличие от других антиоксидантных ферментов. Со способностью перехватывать О2- связывают ингибирующее действие ЦП на процессы ПОЛ в хиломикронах и липопротеинах [Санина, Бердинских, 1986]. ЦП является наиболее сильным среди белков сыворотки ингибитором образования гипогалоидов в системе милопероксидаза-Н2О2-Сl-, способен инактивировать АФК, генерируемые миелопероксидазой, защищая a1- антипротеиназу от окислительной инактивации гипохлоритом [Зенков и др., 1993].

Неспецифическая антиоксидантная активность Цп обусловлена образованием комплексных соединений с медью [Саенко, Ярополов,1991].

Глава 2. Материалы и методы

2.1. Объект исследования

Были проведены исследования 3-х пациентов женского пола в возрасте от 21 до 51 года, поступивших в стационар ККБ №1 с заболеванием – эндемический зоб. Исследования проводили на крови, взятой из вены медперсоналом ККБ№1. У каждой пациентки кровь бралась 4 раза: А – до оперпции, Б - в день операции, В – через3-4 дня после операции, Г-через неделю после операции. Определяли активность церулоплазмина в плазме крови.

2.2. Методика определения активности ЦП

Определение церулоплазмина в плазме крови модифицированным методом Ревина [].

Принцип метода основан на окислении р-фенилендамина при участии церулоплазмина [Камышников, 2000].

Реактивы:

1. 0.5 %-ный водный раствор солянокислого р-фенилендиамина.

2. 0.4 М ацетатный буфер, рН 5.5. Готовят из двух растворов:

1) 54.44 г ацетата натрия растворяют в 1л дистиллированной воды;

2) 22.6 мл ледяной уксусной кислоты доводят до 1л.

Полученные растворы смешивали в отношении 9:1 в большом количестве.

3. 3%-ный раствор фтористого натрия. После растворения соли в дистиллированной воде раствор профильтровывают.

Ход определения:

В пробирки вносят по 8 мл ацетатного буфера и 0.1 мл плазмы. В контрольную пробирку добавляют 2мл раствора фтористого натрия (для инактивации ферментативной активности церулоплазмина). Затем во все пробирки вносят по 1 мл раствора р-фенилендиамина (используемого в качестве субстрата). Пробирки встряхивают, помещают в термостат и инкубируют в течение часа при температуре 37 С. После инкубации во все пробирки (за исключением контрольной) добавляют по 2 мл раствора фтористого натрия. Содержимое пробирок перемешивают, затем их переносят в холодильник, где выдерживают 30 мин при 4С. Пробы колориметрируют против контроля (бледно-розовой окраски) в кюветах с шириной слоя 1,0 см при  = 530 нм.

Умножая значение оптической плотности на коэффициент пересчета 875, получают величину концентрации церулоплазмина в мг/л.

2.3 Статистическая обработка результатов

Обработка эксперементальных данный проводилась общепринятыми методами [Лакин, 1980].


ГЛАВА 3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

Для определения изменения активности церулоплазмина в течение периода лечения, кровь бралась 4 раза:

А – до операции;

Б – через 1-2 часа после операции;

В – через 3-4 дня после операции;

Г – через 7 дней после операции.

В плазме крови людей в норме согласно литературным данным (http://www.health-ua.com/articles/1368.html) ЦП содержится в концентрации 0.20-0.40 мг/мл, т в среднем 0.3 мг/мл. У больных эндемическим зобом, наблюдается значительное увеличение концентрации данного антиоксиданта (рис.1.).

Рис.1. Содержание ЦП в плазме крови здоровых людей и больных эндемическим зобом (1: конц. ЦП в норме; 2: конц. ЦП до операции).

У пациентов была проведена операция по удалению части ЩЗ.

Динамика изменений концентрации ЦП приведена на рис.2 .

Где

1 – до операции;

2 – через 1-2 часа после операции;

3 – через 3-4 дня после операции;

4 – через 7 дней после операции.

Рис.2.

После удаления части щитовидной железы у больных эндемическим зобом наблюдается постепенное уменьшение концентрации ЦП в плазме крови. Но на стадии 3 (через 3-4 дня после операции), заметно незначительное увеличение концентрации, после чего уровень ЦП приближается к нормальной величине, но не попадает в рамки допустимой нормы.

ВЫВОДЫ

1. Проанализирован литературный материал по теме данной курсовой работы.

2: Отработана методика определния церулоплазмина в плазме крови.

3. У больных с эндемическим зобом отмечается повышенный уровень церулоплазмина в плазме крови, превышающий контрольную величину на (%).

4. При данной патологии щитовидной железы после операции концентрация церулоплазмина в крови не достигает нормы.

ЛИТЕРАТУРА

1. Ю.А. Владимиров, Свободные радикалы в живых системах / Ю.А. Владимиров, О.А.Азизова, А.И.Деев и др.// Итоги науки и техники. Сер. Биофизика. − 1991. − Т. 29. – С.

2. Кулинский В.И., Активные формы кислорода и оксидативная модификация макромолекул: польза, вред и защита / В.И. Кулинский, Л.С. Колесниченко // Успехи соврем. биологии. − 1993. − Т. 113, вып. 1. − С. 107-122.

3. Владимиров Ю.А., Перекисное окисление липидов в биологических мембранах/ Ю.А. Владимиров, А.И. Арчаков // М.: Наука. – 1972. − С. 282.

4. Н.К. Зентов, Окислительный стресс. Биохимические и патофизиологические аспекты/ Н.К. Зентов, В.З. Ланкин, Е.Б. Меньщикова //М: Наука. −2001. −С. 340.

5. С.Д. Варфоломеев, Простагландины – новый тип биологических регуляторов / С.Д. Варфоломеев // Соросовский Образовательный Журнал. −1996. −Т 1. −С. 40-47.

6. В.И. Кулинский, Лекционные таблицы по биохимии/ В.И. Кулинский// Биохимия регуляций. −1994. −вып. 4. − С.94.

7. S.M. Rapport , Catalase and glutathione peroxidaze. / S.M. Rapport, M.W.Muller//J.Biol.Chem. – 1979. −№ 14.−P.176−179.

8. B.J. Halliwell, Free radicals in Biology and Medicine. Third edition. / B.J. Halliwell, M.C. Cutteridge// Oxford: Oxford University Press. – 1999. – P. 937.

9. Е.Б. Меньщикова, окислительный стресс. Прооксиданты и антиоксиданты/ Е.Б. Меньщикова, В.З. Ланкин Н.К. Зенков, И.А. Бондарь и др. // М.:фирма «слово». – 2006. – С. 556.

10. М.Н. Кондрашов, Отрицательные аэрономы и активные формы кислорода/ М.Н. Кондрашов// Биохимия. – 1999. – 64, №3. – С.430 – 432.

11. В.П. Комов, Гормональная регуляция оборота супероксиддисмутазы в печени крыс/ В.П. Комов, Е.Ю. Иванова// Вопр. мед. химии. – 1983. −№5. −С.79 – 82.

12. В.И.Кулинский, Биологическая роль глутатиона/ В.И.Кулинский Л.С. Колесниченко // Успехи соврем. биологии. −1990. −Т. 110, вып. 1(4) . − С. 20-33.

13. В.П. Скулачев, Кислород в живой клетке: Добро и зло/ В.П. Скулачев // Соросовский Образовательный Журнал. −1996. −Т. 3. −С. 4-10.

14. И.А.Зборовская, Антиоксидантная система организма, ее значение в метаболизме. Клинические аспекты/ И.А. Зборовская, М.В. Банникова// Вестн. Рос АМН. −1995. −№6. − С.53 – 60.

15. Г.И. Клебанов , Антиоксидантная активность сыворотки крови / Г.И. Клебанов, Ю.О. Теселкин, И.В. Бабенкова и др.//Вестн. Рос. АМН. −1999. − №2. − С. 15-22.

16. М.В.Кения, Роль низкомолекулярных антиоксидантов при окислительном стрессе / М.В. Кения, А.И. Лукаш, Е.П. Гуськов// Успехи соврем. биологии. −1993 . −№4. −С. 456-470.


Приложение 1

Динамика ЦП в плазме больных эндемическим зобом.

№ пробы мг/л
525 ± 31
402 ± 35
481 ± 39
350 ± 22
612 ± 27
525 ± 41
604 ± 30
525 ± 38
568 ± 14
481 ± 34
525 ± 35
394 ± 26

Приложение 2

Данные измерений ЦП в плазме крови больных эндемическим зобом.

№ пробы мг/л
519 533 547 502
371 401 422 413
501 450 487 485
369 338 343 351
601 595 632 619
557 509 533 500
587 615 590 625
552 510 500 537
578 561 571 560
457 504 494 470
512 502 533 552
390 405 409 373



8-09-2015, 19:54

Страницы: 1 2
Разделы сайта