Обмен углеводов

печени, является снижение концентрации глюкозы в крови. В ответ на него альфа-клетки поджелудочной железы выбрасывают в кровь свой гормон - глюкагон. Глюкагон, циркулирующий в крови, взаимодействует со своим белком-рецептором, находящемся на внешней стороне наружной клеточной мембраны гепатоцита. образуя гор мон-рецепторный комплекс. Образование гормон-рецепторного комплекса приводит с помощью специального механизма к активации фермента аденилатциклазы, находящегося на внутренней поверхности наружной клеточной мембраны. Фермент катализирует образование в клетке циклической 3,5-АМФ ( цАМФ ) из АТФ.

В свою очередь, цАМФ активирует в клетке фермент цАМФ-зависимую протеинкиназу. Неактивная форма протеинкиназы представляет собой олигомер, состоящий из четырех субъединиц: 2 регуляторных и двух каталитических. При повышении концентрации цАМФ в клетке к каждой из регуляторных субъединиц протеинкиназы присоединяется по 2 молекулы цАМФ, конформация регуляторных субъединиц изменяется и олигомер распадается на регуляторные и каталитичес кие субъединицы. Свободные каталитические субъединицы катализирует фосфорилирование в клетке ряда ферментов, в том числе фосфорилирование гликогенсинтетазы с переводом ее в неактивное состояние, выключая таким образом синтез гликогена . Одновременно идет фос форилирование киназы фосфорилазы, а этот фермент, активируясь при его фосфорилировании, в свою очередь катализирует фосфорилирование фосфорилазы с переводом его в активную форму, т.е. в форму "a". В результате активации фосфорилазы включается расщепление гликогена и гепатоциты начинают поставлять глюкозу в кровь.

Попутно отметим, что при стимуляции расщепления гликогена в печени катехоламинами в качестве главных посредников выступают b - рецепторы гепатоцитов, связывающие адреналин. При этом происходит повышение содержания ионов Са в клетках, где они стимулируют Са/кальмодулинчувствительную киназу фосфорилазы, которая в свою очередь активирует фосфорилазу путем её фосфорилирования.

Повышение концентрации глюкозы в крови является внешним сигналом для гепатоцитов в отношении стимуляции синтеза гликогена и связывания таким образом излишней глюкозы из русла крови.

Срабатывает следующий механизм: при повышении концентрации глюкозы в крови возрастает и ее содержание в гепатоцитах. Повышение концентрации глюкозы в гепатоцитах, в свою очередь, достаточно сложным путем активирует в них фермент фосфопротеинфосфатазу, которая ка - тализирует отщепление от фосфорилированных белков остатков фосфорной кислоты. Дефосфорилирование активной фосфорилазы переводит ее в неактивную форму, а дефосфорилирование неактивной гликогенсинтетазы активирует фермент. В результате система переходит в состояние, обеспечивающие синтез гликогена из глюкозы.

В снижении фосфорилазной активности в гепатоцитах определенную роль играет гормон b-клеток поджелудочной железы инсулин. Он выделяется b-клетками в ответ на повышение содержания глюкозы в крови. Его связывание с инсулиновыми рецепторами на поверхности гепатоцитов приводит к активации в клетках печени фермента фосфодиэстеразы, катализирующего превращение цАМФ в обычную АМФ, не обладающую способность стимулировать образование активной протеинкиназы. Этим путем прекращается нарабатывание в гепатоцитах активной фосфорилазы, что также имеет значение для ингибирования расщепления гликогена.

Вполне естественно, что механизмы регуляции синтеза и распада гликогена в клетках различных органов имеют свои особенности. В качестве примера можно указать, что в миоцитах покоящихся мышц или мышц, выполняющих небольшую по интенсивности работу, практически нет фосфорилазы "a", но расщепление гликогена все же идет. Дело в том, что мышечная фосфорилаза, находящаяся в дефосфорилированном состоянии или в форме "b", является аллостерическим ферментом и активируется имеющимися в миоцитах АМФ и неорганическим фосфатом. Активированная таким образом фосфорилаза "b" обеспечивает скорость мобилизации гликогена, достаточную для выполнения умеренной физической работы.

Однако при выполнении интенсивной работы, в особенности если нагрузка резко возрастает, этого уровня мобилизации гликогена становится недостаточно. В таком случае срабатывают надклеточные механизмы регуляции. В ответ на внезапно возникшую потребность в интенсивной мышечной деятельности в кровь поступает гормон адреналин из мозгового вещества надпочечников. Адреналин, связываясь с рецепторами на поверхности мышечных клеток, вызывает ответную реакцию миоцитов, близкую по своему механизму к только что описанной реакции гепатоцитов на глюкагон. В мышечных клетках появляется фосфорилаза "a" и инактивируется гликогенсинтетаза, а образовавшийся гл-6-ф используется как энергетическое "топливо", окислительный распад которого обеспечивает энергией мышечное сокращение.

Следует заметить, что высокие концентрации адреналина, наблюдающиеся в крови людей в условиях эмоционального стресса, ускоряют расщепление гликогена в печени, повышая тем самым содержание глюкозы в крови - защитная реакция, направленная на экстренную мобилизация энергетических ресурсов.

2.1. Окислительные пути распада углеводов в тканях

Важнейшими функциями моносахаридов в организме являются энергетическая и пластическая; обе эти функции реализуются в ходе окислительного распада моносахаридов в клетках. При окислении углеводов выделяется 4,1 ккал/г ( около 17 кДж/г ) свободной энергии и за счет окисления углеводов человек покрывает 55-60% своих общих энергозатрат. В ходе окисления углеводов образуется большое количество промежуточных продуктов распада, которые используются для синтеза различных липидов, заменимых аминокислот и др. необходимых клеткам соединений. Кроме того, при окислении углеводов в клетках идет генерация восстановительных потенциалов, которые в дальнейшем используются ими в восстановительных реакциях биосинтезов, в процессах детоксикации, для контроля уровня перекисного окисления липидов и др.

Главным моносахаридом, подвергающимся окислительным превращениям в клетках, является глюкоза, поскольку именно она в наибольших количествах поступает из кишечника во внутреннюю среду организма, именно она синтезируется при глюконеогенезе или образуется в свободном виде или же в виде фосфорных эфиров при расщеплении гликогена. Роль других моносахаридов менее значительна, так как их количество, поступающее в клетки в количественном отношении сильно варьирует в зависимости от состава пищи.

Известно несколько метаболических путей окисления глюкозы, главными из которых являются:

а) аэробное расщепление до углекислого газа и воды;

б) анаэробное окисление до лактата;

в) пентозный путь окисления;

г) окисление с образованием глюкуроновой кислоты.

Глубина окислительного расщепления молекулы глюкозы может быть различной: от окисления одной из концевых группировок молекул до карбоксильной группы, что происходит при образовании глюкуроновой кислоты, до полной деградации молекулы глюкозы при ее аэробном распаде.

2.1.1. Аэробное окисление глюкозы

В клетках аэробных организмов основным, по крайней мере в отношении общего количества расщепляющейся глюкозы, является ее аэробный распад до углекислого газа и воды. При расщеплении 1 М глюкозы ( 180 г ) в аэробных условиях выделяется 686 ккал свободной энергии. Сам процесс аэробного окисления глюкозы можно разделить на 3 этапа:

1. Расщепление глюкозы до пирувата.

2. Окислительное декарбоксилирование пирувата до ацетил-КоА.

3. Окисление ацетила в цикле Кребса ( ЦТК ), сопряженное с работой цепи дыхательных ферментов.

2.1.1.1. Расщепление глюкозы до пирувата

По современным представлениям первый этап окисления глюкозы протекает в цитозоле и катализируется надмолекулярным белковым комплексом - гликолитическим метаболоном, включающим в себя до десятка отдельных ферментов.

Первый этап окисления глюкозы может быть в свою очередь разделен на 2 стадии. В реакциях первой стадии происходит фосфорилирование глюкозы, изомеризация остатка глюкозы в остаток фруктозы, дополнительное фосфорилирование уже фруктозного остатка и, наконец. расщепление гексозного остатка на два остатка фосфотриоз:

Эта реакция катализируется ферментом гексокиназой. В качестве фосорилирующего агента в клетке используется АТФ. Реакция сопровождается потерей свободной энергии порядка 5,0 ккал/моль и в условиях клетки является необратимой.

Регуляция работы первого этапа аэробного расщепления глюкозы осуществляется с помощью термодинамических механизмов и с помощью механизмов аллостерической модуляции регуляторных ферментов, принимающих участие в работе этого метаболического пути.

С помощью термодинамических механизмов осуществляется контроль направления потока метаболитов по данному метаболическому пути. В описанную систему реакций включены три реакции, в ходе которых теряется большое количество энергии: гексокиназная ( G0= - 5,0 ккал/моль ), фосфофруктокиназная ( G0= -3,4 ккал/моль ) и пируваткиназная ( G0= - 7,5 ккал/моль ). Эти реакции в клетке практически не обратимы, в особенности пируваткиназная реакция, и за счет их необратимости процесс становится необратимым в целом.

Интенсивность потока метаболитов по рассматриваемому метаболическому пути контролируется в клетке за счет изменения активности включенных в систему аллостерических ферментов: гексокиназы, фосфофруктокиназы и пируваткиназы. Таким образом, пункты термодинамического контроля метаболического пути одновременно являются и участками, на которых осуществляется регуляция интенсивности потока метаболитов.

Главным регуляторным звеном системы является фосфофруктокиназа. Активность этого фермента подавляется высокими концентрациями АТФ в клетке, степень аллостерического ингибирования фермента АТФ усиливается при высоких концентрациях цитрата в клетке. АМФ является аллостерическим активатором фосфофруктокиназы.

Гексокиназа ингибируется по аллостерическому механизму высокими концентрациями Гл-6-ф. В этом случае мы имеем делом с работой сопряженного регуляторного механизма. В клетке после угнетения активности фосфофруктокиназы высокими концентрациями АТФ накапливается Фр-6-ф, а значит накапливается и Гл-6-ф, поскольку реакция, катализируемая фосфогексоизомеразой, легко обратима. В таком случае повышение концентрации АТФ в клетке ингибирует активность не только фосфофруктокиназы, но и гексокиназы.

Очень сложно выглядит регуляция активности третьей киназы пируваткиназы. Активность фермента стимулируется Гл-6-ф, Фр-1,6-бф и ФГА по аллостерическому механизму - так называя активация предшественником. В свою очередь, высокие внутриклеточные концентрации АТФ,НАДН,цитрата, сукцинил-КоА и жирных кислот угнетают активность фермента по аллостерическому механизму.

В целом, расщепление глюкозы до пирувата тормозится на уровне 3 указанных киназ при высокой концентрации АТФ в клетке,т.е. в условиях хорошей обеспеченности клетки энергией. При недостатке энергии в клетке активация расщепления глюкозы достигается,во первых, за счет снятия аллостерического ингибирования киназ высокими концентрациями АТФ и аллостерической активации фосфофруктокиназы АМФ и, во-вторых, за счет аллостерической активации пируваткиназы предшественниками: Гл-6-Ф, Фр-1,6-бф и ФГА.

Каков смысл ингибирования цитратом фосфофруктокиназы и цитратом и сукцинил-КоА - пируваткиназы? Дело в том, что из одной молекулы глюкозы образуется две молекулы ацетил-КоА, который затем окисляется в цикле Кребса. Если в клетке накапливаются цитрат и сукцинил-КоА, значит цикл Кребса не справляется с окислением уже наработанного ацетил-КоА и есть смысл притормозить его дополнительное образование, что и достигается ингибированием фосфофруктокиназы и пируваткиназы.

Наконец, угнетение окисления глюкозы на уровне пируваткиназы при повышении концентрации жирных кислот направлено на сбережение глюкозы в клетке в условиях, когда клетка обеспечена другим, более эффективным видом энергетического топлива.

2.1.1.2. Окислительное декарбоксилирование пирувата

В аэробных условиях пировиноградная кислота подвергается окислительному декарбоксилированию с образованием ацетил-КоА. Это превращение катализируется надмолекулярным пируватдегидрогеназным комплексом, локализованным в матриксе митохондрий. В состав пируватдегидрогеназного комплекса входят три различных фермента: пируватдекарбоксилаза, дигидролипоатацетилтрансфераза и дегидрогеназа дигидролипоевой кислоты, их количественные соотношения в составе комплекса зависят от источника выделения, как правило это соотношение приближается к 30:1:10.

Первый фермент этого комплекса - пируватдекарбоксилаза ( Е1) катализирует реакциюс образованием углекислого газа и активированного ацетальдегида, связанного с тиаминдифосфатом - простетической группой фермента.

Второй фермент - дигидролипоатацетильрансфераза ( Е2 ) катализирует два последовательных превращения:

а) на первом этапе идет перенос активированного остатка ацетальдегида на простетическую группу фермента - липоевую кислоту, причем этот перенос сопровождается одновременным окислением альдегидной группы до карбоксильной группы: Образуются ацетил-КоА и фермент Е2 с восстановленной формой кофермента.

Третий фермент - дегидрогеназа дигидролипоевой кислоты катализирует превращение восстановленной формы липоевой кислоты предыдущего фермента в окисленную форму: В состав фермента входит в качестве простетической группы ФАД и фактически атомы водорода с восстановленной формы липоевой кислоты вначале переносятся на ФАД, а затем уже переносятся на НАД+ с образованием его восстановленной формы.

Следует напомнить, что при окислении глюкозы образуется 2 молекулы пирувата, что следует учесть при написании суммарного уравнения окислительного декарбоксилирования пирувата:

Превращение пирувата в ацетил-КоА в ходе функционирования пируватдегидрогеназного комплекса необратимо, посколько сопровождается потерей 11,5 ккал/моль энергии в расчете на 1 моль окисленного пирувата. Таким образом, мы имеем дело еще с одним пунктом термодинамического контроля в общей метаболической системе аэробного окисления глюкозы.

Контроль интенсивности потока метаболитов по пируватдегидрогеназному комплексу осуществляется за счет работы двух механизмов: ковалентной модификации и аллостерической модуляции. Ковалентная модификация реализуется в виде фосфорилирования и дефосфорилирования комплекса: Фосфорилирование усиливается при высоких соотношениях АТФ/АДФ, НАДН/НАД+ и ацетил-КоА/КоА. Иначе говоря, активность комплекса снижается, если клетка хорошо обеспечена энергией ( много АТФ и НАДН ) или же цикл Кребса не справляется с окислением имеющегося ацетил-КоА. А дефосфорилирование стимулируется по аллостерическому механизму пируватом, т .е. накопление пирувата в клетке ускоряет его утилизацию - уже известный нам механизм стимуляции предшественником.

Образовавшийся ацетил-КоА, как уже неоднократно упоминалось. поступает в цикл трикарбоных кислот, работа которого сопряжена с функционированием цепи дыхательных ферментов. При функционировании этих двух метаболических путей остаток ацетила окисляется до углекислого газа и воды.

В качестве напоминания можно привести суммарную реакцию окисления ацетила ( из ацетил-КоА ) в цикле Кребса:

Далее уже можно написать суммарное уравнение для всех трех этапов окисления молекулы глюкозы:

Из уравнения следует, что аэробное окисление одной молекулы глюкозы сопровождается образованием 6 молекул углекислого газа, 4 макроэргов ( 2АТФ и 2 ГТФ ), а также 12 восстановленных коферментов ( 10 НАДН и 2 ФАДН2)

Полный расчет энергетической эффективности аэробного окисления глюкозы можно произвести, руководствуясь следующей далее схемой:

На схеме видно следующее:

а) на первом этапе при фосфорилировании гексоз расходуется 2 АТФ ;

б) за счет субстратного окислительного фосфорилирования клетка получает 6 макроэргических эквивалентов ( 4АТФ + 2ГТФ)

в) за счет окислительного фосфорилирования в цепи дыхательных ферментов, куда будут поступать атомы водорода с восстановленных коферментов, клетка получит 34 молекулы АТФ ( З0 молекул АТФ за счет окисления 10 НАДН и еще 4 молекулы АТФ за счет окисления 2 молекул ФАДН2 ).

Оценка энергетической эффективности процесса в плане аккумуляции энергии окисления может быть проведена исходя из того, что свободная энергии гидролиза моля макроэргических связей АТФ в стандартных условиях составляет -7,3 ккал. В таком случае окисление 1 моля глюкозы сопровождается аккумуляцией в АТФ и ГТФ 278 ккал энергии, что составляет около 40% от общего количества энергии, высвобождающейся при окислении 1 моля глюкозы (686 ккал).

Второй важной функцией аэробного окисления глюкозы является пластическая функция. Из промежуточных продуктов ее окисления синтезируется много различных соединений, необходимых клетке:

а) Гл-6-ф используется в клетке для синтеза пентоз и глюкуроновой кислоты,

б) Фр-6-ф - для синтеза аминосахаров,

в) ФГА и ФДА - для образования 3-фосфоглицерола, необходимого для синтеза глицеролсодержащих липидов,

г) 3-фосфоглицериновая кислота - для синтеза заменимых аминокислот: серина, глицина и цистеина,

д) ФЭП - для синтеза сиаловых кислот, используемых при синтезе гетероолигосахаридов,

е) пируват - для синтеза аланина ж) ацетил-КоА - для синтеза жирных кислот и стероидов. Безусловно, этот перечень может быть продолжен. Важно отметить, что атомы углерода из молекулы глюкозы могут оказаться в составе соединений различных классов, что было однозначно доказано с помощью метода меченых атомов.

2.1.3. Аэробное окисление других углеводов

В процессе пищеварения из кишечника в кровь в ощутимых количествах могут поступать галактоза или фруктоза. При расщеплении этих соединений в клетках уже на начальных этапах происходит образование метаболитов, общих с рассмотренным нами путем распада глюкозы.

2.1.3.1. Начальный этап метаболизма галактозы

Галактоза, поступающая в клетки, подвергается фосфорилированию при участии фермента галактокиназы:

В следующей реакции образовавшийся Гал-1-ф взаимодействует с УДФ-глюкозой с образованием УДФ-галактозы:

Реакция катализируется ферментом гексозо 1 фосфатуридилтрансферазой.

Далее УДФ-галактоза изомеризуется в УДФ-глюкозу при участии фермента эпимеразы:

Затем при взаимодействии с следующей молекулой Гал-1-ф образовавшийся в составе УДФ-глюкозы глюкозный остаток выделяется в виде глюкозо-1-фосфата. Гл-1-ф изомеризуется при участии фосфоглюкомутазы в гл-6-фосфат и включается в общий путь окисления глюкозы.

2.1.3.2. Начальный этап метаболизма фруктозы

Фруктоза также после поступления в клетки подвергается фосфорилированию с использованием в качестве фосфорилирующего агента АТФ. Реакция катализируется ферментом фруктокиназай. Образовавшийся Фр-1-ф расщепляется на глицериновый альдегид и фосфогидроксиацетон ( ФГА ) при участии фермента фруктозо-1-фосфатальдолазы . Глицериновый альдегид при участии фермента триозокиназы превращается в 3-фосфоглицериновый альдегид, в ходе фосфорилирования используется молекула АТФ, переходящая в АДФ. Фосфогидроксиацетон при участии триозофосфатизомеразы также превращается в 3-фосфоглицериновый альдегид. Таким образом, из молекулы фруктозы получается 2 молекулы 3-фосфоглицеринового альдегида, а 3-ФГА является промежуточным метаболитом окислительного расщепления глюкозы.

Возможен другой вариант начального этапа метаболизма фруктозы. В этом случае фруктоза подвергается фосфорилированию при участии фермента гексокиназы с образованием фруктозо-6-фосфата с использованием в качестве фосфорилирующего агента АТФ. Однако способность гексокиназы фосфорилировать фруктозу сильно ингибируется в присутствии глюкозы, поэтому считается маловероятным, чтобы этот вариант использования фруктозы играл сколь-либо существенную роль в ее метаболизме.

2.1.3.3. Начальный этап метаболизма гликогена

Окислительное расщепление остатков глюкозы из молекулы гликогена чаще всего начинается с его фосфоролитического расщепления: при участии фермента фосфорилазы с использованием неорганического фосфата от молекулы гликогена последовательно отщепляются моносахаридные блоки с образованием глюкозо-1-фосфата. Гл-1-ф при участии фосфоглюкомутазы превращается в гл-6-Ф - метаболит окислительного пути расщепления глюкозы. Такой путь использования гликогена характерен для клеток мышц или печени.

Для клеток мозга или кожи преобладающим является амилолитический путь расщепления гликогена: вначале под действием ферментов амилазы и мальтазы гликоген расщепляется до свободной глюкозы, а затем глюкоза фосфорилируется и подвергается дальнейшему окислению уже известным нам путем.

2.1.4. Анаэробный метаболизм углеводов

Человек является аэробным организмом, так как основным конечным акцептором отщепляемых от окисляемых субстратов атомов водорода является кислород. Парциальное давления кислорода в тканях составляет в среднем 35-40 мм рт. ст. Но это вовсе не значит, что при определенных условиях в тканях не возникает дефицит кислорода, делающий невозможным протекание аэробных окислительных процессов. Торможение окислительных процессов при дефиците кислорода связано с тем, что клеточный пул НАД+ и других коферментов. способных акцептировать атомы водорода от окисляемых субстратов, весьма ограничен. Как только основная их масса переходит в восстановленное состояние из-за дефицита кислорода, дегидрирование субстратов


8-09-2015, 21:42


Страницы: 1 2 3
Разделы сайта