Введение в физику черных дыр

черной дыры. Во всех остальных случаях элемент поля либо “всплывает”, либо “тонет”. После этого процесса перестройки поля, сопровождаемого излучением, черная дыра сохраняет только те характеристики, которые она не способна сбросить при излучении, — массу, угловой момент и электрический заряд.

Теорема Хокинга. Хотя детальное описание процесса перестройки поля и превращения черной дыры в стационарную представляет собой довольно сложную задачу, этот процесс подчиняется одной общей закономерности, установленной английским физиком С. Хокингом в 1972 г.: площадь поверхности черной дыры не может уменьшаться со временем (рис. 5). Соответствующая

Рис. 5. Возможные процессы с черными дырами. Иллюстрация к теореме Хокинга.

Плоскости t1, t2, t3 обозначают пространственные сечения в соответствующие моменты времени, S0 (tl ) — площадь черной дыры о в момент времени ti . Две черные дыры могут сливаться в одну, черные дыры могут возникать, площадь поверхности одиночной черной дыры возрастает со временем. Одна черная дыра не может распасться на две или более черных дыр. Теорема Хокинга утверждает, что общая площадь поверхностей черных дыр в момент ( является неубывающей функцией времени

теорема была доказана им при самых широких предположениях, среди которых наиболее существенным является предположение о положительности плотности энергии вещества и физических полей, с которыми взаимодействует черная дыра. Это предположение, безусловно справедливое в рамках классической физики, мо-

жет, однако, нарушаться при учете квантовых эффектов, Доказательство этой теоремы основано на том, что падение в черную дыру вещества и поля, плотность энергии которых положительна, приводит к возрастанию энергии черной дыры, а следовательно, и площади ее поверхности. Для невращающейся незаряженной черной дыры в этом легко убедиться, используя связь между массой М и площадью поверхности А : А = = 16pi(GM/c2 )2 , Обратный процесс извлечения вещества и энергии из-под горизонта событий невозможен.

Теорема Хокинга справедлива и в более общем случае, когда имеется несколько черных дыр. При их взаимодействии сумма площадей поверхностей черных дыр не уменьшается со временем. Используя эту теорему, удается, в частности, доказать, что одиночная черная дыра не может распасться на две меньшие черные дыры. Для того чтобы убедиться в этом, предположим сначала, что процесс распада черной дыры с массой М, угловым моментом J и зарядом Q возможен, и в результате этого процесса образуются две далеко отстоящие друг от друга черные дыры с массами М1 и М2 , угловыми моментами J1 и J2 и зарядами Q1 и q2. В соответствии с .законами сохранения энергии и электрического заряда Q = Q1 + Q2, M>=M1+M2

Неравенство возникает из-за того, что часть энергии при распаде может быть унесена гравитационным, а при наличии заряда — и электромагнитным излучением. Это излучение может унести также полный угловой момент или часть его. Можно убедиться, что эти соотношения противоречат условию возрастания площади поверхности черных дыр: A1+A2 >=A.

Обратный процесс слияния двух черных дыр возможен. Этот процесс может сопровождаться излучением гравитационных волн. Если при слиянии черных дыр с массами М1 и М2 образуется дыра с массой М, то уносимая излучением доля энергии epsilon=(M1 + M2 —M)/(M1+ M2 ) не превосходит величины 1—2-3/2 = 0,64647... Если заряды этих дыр равны нулю или имеют одинаковый знак, то epsilon<1/2- Если к тому же черные дыры не вращаются и J1 = J2 = 0, то epsilon< 1 —2 -2/2 = 0,2929...

ЭВОЛЮЦИЯ ЗВЕЗД И ЧЕРНЫЕ ДЫРЫ

Возможен ли коллапс малых масс? Прервем на время рассказ об удивительных свойствах черных дыр, чтобы ответить на неизбежный вопрос: “А какие есть основания считать, что черные дыры действительно существуют в природе?”

Для того чтобы тело с массой М образовало черную дыру, необходимо сжать его до размера порядка гравитационного радиуса, при этом плотность окажется порядка р{ро}~M/(4/3piR3 g )=Зс6 /(32piG3 М2 )~7,3-1082 M-2 г/см3 (М — масса в граммах). Еще задолго до достижения таких плотностей возникает необходимость преодолеть сопротивление обычных сил отталкивания. Самостоятельному переходу малых масс в энергетически выгодное состояние черной дыры препятствует энергетический барьер, высота которого определяется величиной необходимой работы против сил давления. Для больших масс такого барьера нет. Чтобы оценить критическую массу, при которой энергетический барьер исчезает, рассмотрим однородный шар, составленный из N нейтронов. Тогда, считая, что давление нейтронного вещества определяется уравнением состояния идеального (вырожденного) ферми-газа, для высоты энергетического барьера получаем значение порядка N?/3 т Пл с2 , где mПл =

= sqrt[- hc/G] примерно=2,8 • 10-5 г — так называемая планковская масса. Если сравнить это выражение с полной массой покоя системы из N барионов Nmn с2 (mn = 1,67-10-24 г — масса нейтрона), то видно, что при N<Nкр = = (т пл /тn )3 ~ - 10 57 действительно имеется барьер, препятствующий гравитационному коллапсу вещества {3 В 1962 г. известный советский физик Я. Б. Зельдович заметил, что с учетом квантовых эффектов коллапс малых масс оказывается возможным, однако поскольку этот процесс связан с квантовым подбэрьерным просачиванием, то вероятность его ничтожно мала. Для того чтобы предотвратить возможное недоразумение, подчеркнем, что мы рассматриваем в этом разделе вопрос о коллапсе изолированной массы. В среде с высокой плотностью и давлением возможно образование черных дыр меньшей массы. }.

О том, насколько велик этот потенциальный барьер в случае малых масс, позволяет судить следующий пример. Если бы мы захотели создать малую черную дыру, заставив сколлапсировать 1600 т железа, на преодоление барьера нам бы пришлось затратить энергию, выделяемую при термоядерном горении 2*1013 т дейтерия. Иными словами, нам бы потребовалось взорвать весь дейтерий, содержащийся в земном океане! Поэтому в современной Вселенной возможно образование черных дыр только с массой большей или порядка Мкрит .= = тп N крит. ~ -1033 г. Если теперь вспомнить, что масса средней звезды как раз имеет такой порядок (масса Солнца равна 2*Ю33 г), то возникает закономерный вопрос, не возникают ли черные дыры естественным образом на каком-либо этапе эволюции звезд.

Эволюция звезд. Звезды возникают из облаков газа и пыли, имеющихся во Вселенной. Первоначальные неоднородности этих образований возрастают со временем. В этом проявляется характерное для гравитационного взаимодействия свойство неустойчивости, уже отмечавшееся ранее. В результате этого процесса возникают массивные сгущения с массами, во много раз большими солнечной массы. Подобная протозвезда сжимается, при этом ее первоначальная потенциальная гравитационная энергия превращается при сжатии в тепловую и температура в ее центре растет. Когда она достигает 106 К, начинаются термоядерные реакции.

Доля водорода, наиболее распространенного элемента Вселенной, в звездах высока — от 50 до 80%, а вместе с гелием он составляет от 96 до 99% массы звезды. При термоядерной реакции водород превращается в гелии и выделяется та энергия, которая компенсирует звезде ее потери на излучение. В термоядерной топке такой звезды, как наше Солнце, ежесекундно превращается в гелий ~600 млн. т водорода и при этом освобождается энергия, эквивалентная (согласно формуле Эйнштейна Е = тс2 ) массе ~4 млн. т. Однако запасы водорода в звездах настолько велики, что их хватает на миллиарды лет. Давление нагретого газа противостоит в звезде гигантским силам гравитационного притяжения, горящие звезды оказываются устойчивыми и, пока не исчерпались запасы водородного горючего, параметры звезды (такие, как температура, светимость), изменяются крайне незначительно.

После выгорания водорода давление падает и центральная область звезды сжимается. При сжатии растут плотность и температура и, когда температура достигает 100 млн. град., начинается термоядерное горение накопившегося гелия, Резкое выделение энергии при этом заставляет внешнюю часть звезды расшириться до гигантского размера в сотни миллионов километров, и звезда превращается в красный гигант. Сгорание гелия происходит быстрее, и эта стадия занимает существенно меньшее время, чем стадия горения водорода. Для звезд гораздо массивнее Солнца при дальнейшем сжатии ядра после выгорания гелия возможны и другие типы термоядерных реакций, приводящих к появлению более тяжелых элементов, однако и эти стадии лишь слегка оттягивают неизбежный конец.

Картина гибели звезды зависит от ее массы. Звезды с массой порядка солнечной и меньше, постепенно сжимаясь и, возможно, выбросив часть своего вещества, превращаются в белые карлики — карликовые звезды с размером порядка радиуса Земли и огромной плотностью. Плотность их настолько велика, что кубический сантиметр их вещества имеет массу, измеряемую тоннами. У только что образовавшегося белого карлика достаточно велики запасы тепловой энергии, и поэтому, лотя ядерная энергия уже исчерпана, они светят еще в течение сотен миллионов лет, постепенно остывая. Звезды средней массы, от одной до нескольких масс Солнца, могут также превращаться в белые карлики, сбросив, однако, значительную часть своего вещества.

Самые массивные звезды заканчивают свой жизненный путь грандиозным взрывом. Взрывы массивных звезд приводят к выделению столь колоссальных энергий, что на короткое время умирающая звезда становится ярче целой галактики. Такие вспышки звезд, получивших название сверхновых, происходят в галактиках в среднем раз в 100 лет. Последняя вспышка сверхновой в нашей Галактике наблюдалась в 1604 г. При взрыве массивных сверхновых в космос выбрасывается огромное количество вещества, масса которого может составлять несколько солнечных масс. Скорость расширения оболочки, первоначально составляющая тысячи километров в секунду, с течением времени уменьшается до сотен километров в секунду. Через сотни дней сверхновая гаснет, и на ее месте наблюдают в виде туманности сброшенную светящуюся оболочку.

Белые карлики. Предел Чандрасекара. Хотя детально рассчитать бурные процессы, сопровождающие ,гибель звезды, затруднительно, вопрос о том, какова дальнейшая участь звезды или ее остатка, допускает довольно четкий ответ. Поскольку ядерное горючее уже выгорело и потери энергии на излучение не компенсируются, звезда или ее остаток могут закончить свою эволюцию в виде устойчивого холодного образования, если только давление этого холодного вещества окажется достаточно большим, чтобы противостоять гигантским силам гравитационного притяжения. Основной вклад в давление при низких температурах дают фермионы, которые в соответствии с принципом Паули не прекращают своего движения и при абсолютном нуле температуры.

При сжатии выгоревшей звезды на некотором этапе происходит разрушение атомов на их составляющие: ядра и свободные электроны. Это случается, когда атомы прижаты друг к другу до расстояний, меньших радиуса орбит вращения электронов в атоме. Давления вырожденного электронного газа оказывается достаточным для обеспечения равновесия звезды с массой меньшей или порядка солнечной. Сжатие такой звезды прекращается, когда размеры ее становятся порядка размера Земли и образуется белый карлик.

Для белых карликов характерны следующие средние параметры: масса — 1,2-1033 г, радиус — 9000 км, средняя плотность — 400 кг/см3 , ускорение силы тяжести на поверхности — 106 м/с2 , вторая космическая скорость (т. е. скорость ухода частиц с поверхности) — около 4000 км/с.

Чем больше масса белого карлика, тем выше плотность вещества в нем и тем больше импульс Ферми электронов. При плотности вещества порядка 2000 кг/см3 скорость движения электронов становится порядка скорости света и далее почти не растет. Поэтому становится несущественным другой фактор, приводящий к увеличению давления, а именно, рост частоты ударов электронов о поверхность, помещенную в подобный релятивистский газ. Этого оказывается достаточно для того, чтобы рост давления перестал компенсировать рост силы тяготения, и звезда потеряла устойчивость. В начале 30-х гг. известный астрофизик С. Чандрасекар показал, что предел устойчивости белых карликов — 1,2 солнечной массы. Эта предельная масса получила название предела Чандрасекара. Для вращающихся звезд этот предел немного больше.

Нейтронные звезды и пульсары. Что же происходит с мертвыми звездами, массы которых превышают предел Чандрасекара? Этот вопрос был исследован в ряде работ в 30-х гг., среди которых следует выделить работы В. Бааде и Ф. Цвикки (1934 г.), Л. Д. Ландау (1937 г.) и Ю. Р. Оппенгеймера и Г. Волкова (1939 г.). В них было показано, что сжатие таких массивных звезд продолжается до тех пор, пока плотность в них не достигнет плотности, характерной для атомных ядер: 1014 — 1015 г/см3 . При этом происходит перестройка вещества, в результате которой ядра разваливаются на составляющие их протоны и нейтроны. Энергия вырожденных электронов настолько велика, что энергетически более выгодным оказывается их слияние с протонами, и в веществе звезды при такой плотности появляется заметная нейтронная составляющая. Давление вырожденного нейтронного ферми-газа может остановить Сжатие, при этом образуется так называемая нейтронная звезда. Нейтронные звезды имеют размер от 10 до нескольких десятков километров.

Для нейтронных звезд характерны следующие средние параметры: масса — 2*1033 г (порядка солнечной), радиус — 10—20 км, плотность — 2*1014 г/см3 , минимальный период вращения — 0,001 с, вторая космическая скорость — 0,4—0,5 скорости света.

Открытие нейтронной звезды, предсказанной теоретиками, произошло в 1967 г. довольно неожиданным образом. Начиная с 1964 с, на радиотелескопе в Кавен-дишской лаборатории Кембриджского университета в Англии в группе, возглавляемой профессором Э. Хьюи-шем исследовались вариации радиоизлучения от дискретных космических источников. Однажды летом 1967г. аспирантка Э. Хьюиша Жаклин Белл обратила внимание на один довольно необычный источник, посылающий, как выяснилось позднее, строго периодические ра-* диосигналы. До открытия других подобных объектов, получивших позднее название пульсаров, этот уникальный строго периодический характер радиоизлучения настолько озадачил открывателей, что в качестве одной из гипотез обсуждалась возможность посылки этих сигналов представителями внеземной цивилизации.

Идея о возможной связи пульсаров с остатками сверхновых завоевала признание, когда после открытия еще нескольких пульсаров в 1968 г. был открыт пульсар в Крабовидной туманности, получивший название ПР0532 обладавший рекордно коротким периодом 0,03 с. В 1054 г. астрономы Древнего Китая наблюдали вспышку сверхновой в созвездии Тельца, как раз в том месте, где теперь наблюдается Крабовидная туманность. Более того, по скорости расширения этой туманности астрономам удалось установить момент начала расширения, который блестяще совпал с датой наблюдения сверхновой китайскими астрономами. Таким образом, Крабовидная туманность — это оболочка, сброшенная сверхновой, а пульсар NP0532 — остаток звезды.

Расчеты показали, что ни вращение, ни колебания белых карликов не могут объяснить столь короткий период излучения пульсаров (до сотых долей секунды), и ученые пришли к выводу, что пульсары представляют собой разновидность нейтронных звезд. Периодическое радиоизлучение пульсаров связано с наличием сильных магнитных полей у вращающихся нейтронных звезд. Пульсар работает как маяк: направляемое магнитным полем излучение достигает Земли всякий раз, когда направление магнитного поля совпадает с направлением на Землю. В настоящее время число известных пульсаров измеряется сотнями.

Предельная масса нейтронных звезд. Для устойчивых нейтронных звезд также существует верхний предел массы. Этот предел, равный 2—3 солнечным массам {ДЛя нейтронных звезд поправки, связанные с общей теорией относительности, могут достигать 15—20%. Ранее уже упоминалось о том, что наряду с общей теорией относительности имеется целый ряд логически непротиворечивых теорий гравитации. Вывод о существовании предельной массы нейтронных звезд остается справедливым и в других наиболее разработанных вариантах (например, в скаляр-тензорной теории Бранса—Дикке и в биометрической теории Розека), однако само значение предельной массы может оказаться другим }, возникает по той же причине, что и предел Чанд-расекара: нейтроны при плотностях, соответствующих предельной массе, становятся релятивистскими, давление с увеличением плотности растет медленнее и ней-.тронная звезда теряет устойчивость. Новым оказывается то, что для звезд большей массы остановка коллапса невозможна и сжатие звездных остатков с массой, большей 2—3 масс Солнца, приводит к образованию черной дыры. Если бы вспышки всех достаточно массивных сверхновых приводили бы к образованию черных дыр, то в нашей Галактике число черных дыр исчислялось бы миллионами. Однако из-за того, что при взрыве массивных сверхновых может сбрасываться большая доля их массы, число реально существующих черных дыр может оказаться значительно меньше.

Итак, после гибели звезды остается либо белый карлик, либо нейтронная звезда, либо черная дыра. Белые карлики были известны уже многие десятилетия, нейтронные звезды открыты в виде пульсаров 15 лет назад, а что известно о черных дырах?

КАК ОБНАРУЖИТЬ ЧЕРНУЮ ДЫРУ?

Одиночные черные дыры. Как же увидеть черную ды-ру, возникшую при коллапсе звезды? Одиночную черную дыру можно обнаружить, только если она находится относительно недалеко от Солнца, поскольку светимость ее на два порядка слабее светимости Солнца.

Межзвездный газ, аккрецирующий на черную дыру, нагревается и может начать излучать. Основная часть излучения формируется вдали от черной дыры, поэтому по его свойствам трудно отличить черную дыру от одиночной нейтронной звезды, обладающим слабым магнитным полем или с диаграммой направленности излучения, препятствующей наблюдению ее как пульсара.

Черные дыры в двойных системах. Гораздо более простой представляется задача обнаружения черной дыры, если она образует двойную систему вместе с обычной звездой. Случай, когда одна из компонент двойной системы в результате более быстрой эволюция образует черную дыру еще при жизни своего менее массивного компаньона, является благоприятным для наблюдения по следующим причинам.

Во-первых, хотя сама черная дыра визуально не наблюдается, вращение видимой звезды вокруг общего центра масс приводит к периодическому изменению, связанному с эффектом Доплера, длин волн принимаемого излучения. Если массу видимой звезды найти, воспользовавшись известной зависимостью спектральных характеристик звезд от их массы, то, зная период вращения и максимальное значение проекции скорости видимой звезды на луч зрения наблюдателя, определяемые по характеристикам эффекта Доплера, можно вычислить минимальное значение массы невидимой


29-04-2015, 01:57


Страницы: 1 2 3 4 5 6 7
Разделы сайта