Первый закон физики черных дыр бE=(kappa*c2 /8piG)*бA+OMEGA*бJ+ФбQ
Здесь kappa — поверхностная гравитация,OMEGA — угловая скорость и Ф — электрический потенциал черной дыры. Второй и третий члены в правой части этой формулы описывают изменение энергии вращения и электрической энергии. Внешне эта формула напоминает первое начало термодинамики: бE = T*бS + OMEGA*бJ+ФбQ, дающее выражение для изменения внутренней энергии термодинамической системы при изменении ее энтропии 6S, углового момента бJ и заряда бQ.
Дж. Бекенштейн, ученик Дж. Уилера, отнесся к этой аналогии серьезно, приписав черной дыре энтропию S, пропорциональную ее площади А, и температуру Т, пропорциональную ее поверхностной гравитации kappa.. Для того чтобы продемонстрировать полезность термодинамического подхода в физике черных дыр и оценить коэффициенты пропорциональности в выражении для энтропии и температуры черной дыры, он рассмотрел модель тепловой машины, превращающей теплоту в работу. Ее действие основано на сбрасывании в черную дыру, выступающую в роли холодильника, некоторого количества тепла из опускаемого к горизонту событий контейнера, заполненного тепловым излучением.
Дж. Бекенштейн оценил КПД этой своеобразной тепловой машины и, используя формулу Карно, получил для температуры черной дыры выражение, лишь на численный множитель порядка 1 отличающееся от хокин-говской температуры черной дыры. Если использовать приведенное выше выражение для бE и положить температуру черной дыры равной хокинговской, то соответствующее значение энтропии черной дыры оказывается равным:
Sчд =Ar/4(hG/c3 )тождесвенно= Ak/4l2 пл
Теорема Хокинга, позволяет записать аналог второго начала термодинамики в видег
Второй закон физики чёрных дыр
бSчд>=0.
В обоих случаях (в термодинамике и физике черных дыр) второе начало означает присущую системе в целом существенную необратимость и выделяет тем самым направление времени. В термодинамике .закон возрастания энтропии приводит к тому, что часть внутрен? ней энергии, которая не может быть превращена в работу, увеличивается со временем. Совершенно аналогично закон возрастания площади черной дыры означает, что доля внутренней энергии черной дыры, которую из нее нельзя извлечь, возрастает со временем. Как и в термодинамике, величина SЧД связана с невозможностью получить информацию о строении системы, в данном случае о внутренности черной дыры.
На первый взгляд наличие хокинговского испарения, в результате которого происходит уменьшение площади поверхности черной дыры, существенно подрывает рассматриваемую аналогию. Однако это не так. Поскольку хокинговское излучение носит тепловой характер, оно обладает энтропией SИЗЛ , причем оказывается, что всегда сумма энтропии этого излучения и энтропии черной дыры не убывает со временем. Поэтому выполняется
Обобщенный второй закон физики черных дыр
бSЧд + бSвещ >=0,
где SЧд — сумма энтропии черных дыр, в рассматриваемой системе и Sвещ — полная энтропия вещества и излучения вне черных дыр. Тот факт, что в обобщенный закон на одинаковом основании входят, казалось бы, разные по своей природе величины, еще раз указывает на их глубокое родство.
В термодинамике равновесие невозможно, если температура разных частей системы различна. Наличие состояния термодинамического равновесия и существование .температуры в термодинамике постулируются нулевым началом. В физике черных дыр справедливо аналогичное утверждение:
Поверхностная гравитация kappa стационарной черной дыры постоянна везде на горизонте событий.
Если поверхностная гравитация в разных точках поверхности черной дыры различна, то такая черная дыра нестационарна и предоставленная самой себе с течением времени приходит в стационарное состояние с постоянным к. Этот нулевой закон выполняется и для системы, состоящей из термодинамической системы и черной дыры.
Наконец, в полной аналогии с третьим законом термодинамики можно сформулировать Поверхностную гравитацию невозможно обратить в нуль посредством любого конечного числа операций.
Сформулированные законы физики черных дыр оказываются крайне полезными при рассмотрении различных явлений с участием черных дыр. Точно так же, как начала термодинамики, они позволяют изучать многие общие характеристики таких процессов, не привлекая конкретные решения сложных динамических уравнений. Черные дыры, энтропия и информация. Наличие связи тепловых свойств черных дыр с потерей информации об области пространства-времени внутри ее находится в согласии с общим информационным подходом к термодинамике, который восходит к классикам теории теплоты, был сформулирован Л. Сциллардом и развивался многими физиками и математиками. Суть этого подхода состоит в утверждении, что существует прямая связь между недостатком информации о физической системе и величиной ее энтропии.
Прежде чем привести более точную, количественную формулировку этой связи, напомним, как происходи? переход обычной динамической системы в состояние тер модинамического равновесия. В процессе такого пере хода система быстро “забывает” свое начальное состоя- ние, происходит “запутывание” (стохастизация) движет ния составляющих ее частиц. Вследствие присущей си стеме взаимодействующих частиц динамической не устойчивости малые неопределенности в начальных ус- ловиях быстро возрастают. В результате возникают бы; строе перемешивание состояний частиц и равномерное заполнение всей доступной системе области значений динамических переменных. Аналогичным образом взаимо действие динамической системы с термостатом приводит к тому, что все макроскопические состояния, отвечаю щие заданным микроскопическим параметрам системы, оказываются равновероятными. Иными словами, в тер модинамике состояние системы с заданным набором макроскопических параметров является крайне вырож-. денным, поскольку ему отвечает большое число N разт личных микроскопических состояний. Мерой этого выт рождения и служит энтропия системы S = klnN.
Равновероятность вырожденных состояний означает, что чем больше N, тем меньшей информацией о том, в каком из конкретных состояний находится система, мы располагаем. В простейшем случае, когда до некоторого процесса имелось Р равнозначных ответов на вопрос о состоянии системы, а после него число равнозначных ответов стало р, изменение информации в результате этого процесса равно{/-дельта треугольник} /I = kln(P/p). Если /I>0, мы имеем дело с приростом информации, в обратном случае — С ее убылью. Переход динамической системы в состоял ние термодинамического равновесия в процессе стоха-стизации связан с потерей информации, и /I = — klnN. В нашем простом случае мы приходим к важному соотношению: /S = — /I, имеющему общий характер. Уменьт шение количества информации о физической системе соответствует увеличению ее энтропии.
Анализ конкретных процессов измерения приводит к следующему утверждению, являющемуся ключевым для информационного подхода к термодинамике: всякое измерение, позволяющее получить дополнительную информацию о состоянии системы и тем самым уменьшить ее энтропию, необходимо сопряжено с такими действиями, которые сами приводят к возрастанию энтропии в окружающем мире, перекрывающем ее понижение в системе,
В черной дыре информация о состоянии сколлапси-ровавшего вещества отсекается мощными силами тяготения. Чёрная дыра “забывает” свою предысторию, сохраняя память только о “макроскопических” характеристиках: массе, заряде и угловом моменте. В соответствии с этим энтропия черной дыры SЧ д служит мерой потери информации в результате коллапса, и число различных (“микроскопических”) состояний системы, коллапс которой приводит к образованию черной дыры с заданными параметрами М, J, Q, должно быть пропорционально ехр(Sчд /k). К сожалению, прямое вычисление этого числа состояний представляет собой весьма сложную и еще не решенную задачу.
До открытия эффекта Хокинга мы знали единственный механизм появления тепловых свойств у динамической системы. Он состоит в превращении упорядоченного движения частиц в хаотическое; Физика черных Дыр указала нам новый механизм, позволив увидеть новые и неожиданные аспекты термодинамики, обогатив наше понимание природы теплоты.
ЧТО ВНУТРИ ЧЕРНОЙ ДЫРЫ?
Теоремы о сингулярностях. Область пространства-Времени внутри черной дыры недоступна для изучения отдаленному наблюдателю. Однако падающий вместе с; коллапсирующим телом наблюдатель может “увидеть” происходящие там события. Таким образом, предсказания теории, касающиеся внутренности черной дыры, в принципе допускают проверку. Своеобразие этой проверки состоит в том, что результаты ее не могут быть сообщены наружу и использованы для сравнения с теорией физиками, находящимися вне черной дыры.
Учет квантовых эффектов и открытие хокинговского излучения, по-видимому, несколько изменяют эту ситуацию. При уменьшений размера черной дыры в резулъта-
те квантового испарения ее радиус становится все мень ше и меньше, и свойства гравитационного поля в обла стях, находившихся до начала испарения под гравит,а- ционным радиусом, могут повлиять на сам характер ис парения. При сферическом коллапсе все тела, попавшие под гравитационный радиус, достигают за время порядка RR /c физически особой точки r = 0, в которой кривизна пространства-времени формально обращается в беско нечность. В 1965 г. английский физик Р. Пенроуз дока зал теорему, утверждающую, что и в самом общем слу чае, если только выполняются уравнения Эйнштейна,
плотность энергии положительна и начальные данные полностью определяют решение в будущем, внутри черной дыры обязательно имеются особые точки, в которцх
обрываются мировые линии. Эта и другие подобные.тео-ремы, доказанные Р. Пенроузом и С. Хокингом в конде 60-х гг., указывают на то, что в рамках классических уравнений Эйнштейна появление сингулярностей внутри нерной дыры в процессе коллапса является неизбежным.
Принцип “космической цензуры”. Строго говоря, появление, сингулярностей в теории сигнализирует о том, что эта теория является неточной или неполной. Поэтому уже сам факт существования сингулярностей бросает, вызов теоретикам. При описании свойств черных дыр с точки зрения внешнего наблюдателя сингулярности, лежащие под горизонтом, никак себя не проявляют. Иное дело, если сингулярность образуется вне горизонта событий. Существование таких сингулярностей, получивших название “голых”, означало бы нарушение свойства детерминированности теории. Принято считать, чтб в физически приемлемых ситуациях голые сингулярности не образуются.
Соответствующий принцип, получивший название принципа “космической цензуры”, был сформулирован Р. Пенроузом в 1969 г. Согласно этому принципу, прежде чем в процессе гравитационного коллапса неограниченно возрастет кривизна и разовьется сингулярность, гравитационное поле достигает такой силы, что перестает выпускать информацию наружу, т. е. возникает горизонт событий, окружающий сингулярность. И хотя принций “космической цензуры” выглядит весьма правдоподобно, а многочисленные работы, содержащие ана-
лиз различных мысленных экспериментов, его подтверждают, тем не менее до сих пор отсутствует достаточно общее строгое доказательство этого принципа. Доказательство принципа “космической цензуры” и выяснение условий, при которых он справедлив, являются одной из наиболее важных нерешенных задач общей теории относительности { Сам Пенроуз так высказался об этой ситуации: “Таким образом, мы имеем дело, возможно, с самым фундаментальным нерешенным вопросом общерелятивистской теории коллапса, а именно: существует ли “космический цензор”, запрещающий появление голых сингулярностей и облачающий каждую из них в абсолютный горизонт событий?”}.
Пространство-время вблизи сингулярности незаряженной невращающейся черной дыры. Если коллапси-рующее тело, образующее черную дыру, в момент пересечения горизонта обладало незначительными отклонениями от сферической симметрии, то возникающая нестационарная черная дыра слабо отличается от шварцшильдовской. В процессе дальнейшего сжатия под горизонтом событий отклонение от симметрии нарастает, и можно было бы ожидать, что даже малые первоначальные возмущения существенно изменяют свойства пространства-времени вблизи сингулярности.
В 1978 г. советские физики А. Г. Дорошкевич и И. Д. Новиков обратили внимание на то, что хотя наблюдатель, падающий вместе с коллапсирующим телом, действительно столкнется с ростом возмущений, тем не менее наблюдатель, падающий внутрь черной дыры через длительное время после ее образования, обнаружит, что возмущения исчезают и пространство-время вблизи сингулярности практически не отличается от идеального сферически-симметричного пространства-времени, описываемого геометрией Шварцшильда. Причина исчезновения возмущений вблизи сингулярности та же, что при перестройке поля в процессе превращения черной дыры в стационарную. Наличие “веса” приводит к “падению” возмущений на сингулярность, так что влияние источников подобных возмущений, находящихся на коллапси-рующем теле, вымирает вблизи r = 0 при удалении от границы этого тела.
Внутренность заряженной и вращающейся черной дыры. Хотя при внесении малого заряда или малого углового момента свойства черной дыры изменяются незначительно, глобальные свойства точных решений уравнений Эйнштейна, как показывает их анализ, претерпевают качественное изменение. При коллапсе заряда Q возрастающие дальнодействующие силы отталкивания способны остановить сжатие и заряд начнет расширяться9 . Если справедлив принцип причинности, а у физиков есть все основания считать, что это так, то при расширении заряд обязан выйти в какую-то другую область пространства-времени, сигналы из которой не достигают наблюдателя, расположенного вне черной дыры. Соответствующее точное решение уравнений Эйнштейна показывает, что это пространство находится в абсолютном будущем. Более того, формально возможен процесс коллапса и расширения заряда без развития сингулярности. Нарушения теоремы Пенроуза о сингулярностях не происходит, поскольку оказывается нарушенным одно из условий теоремы, а именно, дальнейшая эволюция заряда оказывается непредсказуемой. Эта эволюция зависит не только от начальных данных, но и от задаваемых произвольно свойств того мира, куда заряд выходит. Аналогичная ситуация имеет место в случае если система вращается.
В 1979 г. советские физики И. Д. Новиков и А. А. Старобинский обратили внимание на то, что учет квантового рождения частиц в электрическом поле может Качественно изменить ситуацию. Дело в том, что прежде чем произойдет остановка коллапса заряженного тела(, его электрическое поле настолько возрастает, что рождающиеся электрон-позитронные пары будут оказывать существенное влияние на метрику. Анализ этого влияния приводит к выводу, что выход в новое пространств, По-видимому, невозможен, а ситуация в целом близка К той, которая имеет место при сферическом коллапсе незаряженного вещества.
Роль эффектов квантовой гравитации. Сингулярности — это болезнь общей теории относительности, и, как показывают строгие теоремы, болезнь неизлечимая. Однако имеются основания считать, что учет эффектов квантовой гравитации, приводящий к модификации уравнений Эйнштейна в областях с большой кривизной,
* Смена сжатия расширением возможна при r<.GМ/сг (1--sqrt( 1-(Q2 /GM2 ))),
является тем универсальным средством, которое предотвращает появление сингулярностей. Величина 1пл = = sqrt(hG/c3) ~- 10-33 см, называемая планковской длиной, является характерным масштабом, возникающим при рассмотрении квантовогравнтационных явлений. Эффекты, связанные с квантовой природой гравитационного поля, оказываются существенными тогда, когда кривизна пространства-времени больше или порядка lпл -2 . Модификация уравнений Эйнштейна связана с добавлением в уравнения членов, учитывающих вклады в энергию-импульс квантовых эффектов поляризации вакуума и рождения частиц гравитационным полем.
При сравнении поляризации вакуума в гравитационном поле с поляризацией вакуума в электростатическом поле выясняется одно крайне существенное отличие. Поляризация вакуума связана с действием электростатического поля на вакуумные виртуальные пары. В электрическом поле заряженные частицы виртуальной пары двигаются таким образом, что ближе к заряду, создающему внешнее поле, находится частица виртуальной пары, имеющей противоположный заряд. Поэтому даже в том случае, когда отсутствует рождение реальных частиц из вакуума, взаимодействие виртуальных пар при усреднении приводит к экранировке внешнего заряда. Наблюдаемый на бесконечности заряд оказывается меньше, чем заряд, внесенный в вакуум.
В гравитационном поле, поскольку одноименные заряды притягиваются, имеет место обратное явление. Эти простые качественные соображения подтверждаются результатами, полученными в 1977 г. советскими учеными Г. А. Вилковыским и Е. С. Фрадкиным, которые свидетельствуют в пользу того, что квантовая гравита-ция является так называемой “асимптотически свободной” теорией, т. е. теорией, в которой константа взаимодействия на малых расстояниях, эффективно уменьшаясь, обращается в ноль. В соответствии с этим эффекты квантовой гравитации проявляются в ослаблений силы притяжения на малых расстояниях. Это может привести к отсутствию сингулярности при гравитационном коллапсе. В пользу такой возможности свидетельствует также то, что в квантовой теории условие положительности плотности энергии нарушается, и поэтому строгие теоремы, которые используют это предположе-
ние в той или иной форме, перестают работать. Вопрос о роли эффектов квантовой гравитации вообще и в черных дырах в частности чрезвычайно важен. И хотя квантовая гравитация как теория еще далеко не завершена, а применение ее к исследованию конкретных вопросов'связано со значительными, часто принципиальными трудностями, уже полученные на этом пути результаты подтверждают надежду на то, что квантовая гравитация действительно устранит сингулярности.
ВМЕСТО ЗАКЛЮЧЕНИЯ: ПРОБЛЕМЫ И ГИПОТЕЗЫ
Элементарные черные дыры (максимоны). Что же остается после взрыва черной дыры? Результаты, полученные С. Хокингом, не дают ответа на этот вопрос, поскольку они непосредственно применимы лишь до тех пор, пока масса испаряющейся черной дыры гораздо больше планковской массы mпл
=sqrt[hc/G]~- 10-5
г. В 1979г. Г. А, Вилковыский и В. П. Фролов показали, что учет эффектов квантовой гравитации приводит к тому, что черные дыры с массой, меньше планковской, не образуются. Поэтому если только отсутствует сингулярность внутри черной дыры { При наличии сингулярности возможно в результате распада чёрной
29-04-2015, 01:57