Лабораторные работы по деталям машин

МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕКСТИЛЬНЫЙ УНИВЕРСИТЕТ им. А.Н. КОСЫГИНА


Кафедра Детали машин и ПТУ


Лабораторная работа №1


Тема: «Сортамент крепёжных изделий»


Выполнил студент гр.8-99 /Сушкин О.В./


Проверил: /Хейло С.В./


МОСКВА 2002 г.

Цель работы: Изучить сортамент крепёжных изделий (болтов, винтов, шпилек, шайб, применяемых в машиностроении) и их условные обозначения по стандартам.


Оборудование и инструмент: Стандартные крепёжные изделия (болт, гайка, шайба и др.), линейка, шаблон резьбовой.


Теоретические предпосылки.

Все машины и механизмы состоят из деталей и сборочных единиц. Деталь (по ГОСТ 2.101-68) – это изделие, составные части которого подлежат соединению между собой на предприятии-изготовителе сборочными операциями.

Детали и сборочные единицы связаны между собой тем или иным способом. Эти связи можно разделить на подвижные (шарниры, подшипники, зацепления) и неподвижные (резьбовые, сварные, шпоночные и др.).

Подвижные связи необходимы для передачи движения и изменения положения деталей друг относительно друга. Неподвижные связи (жёсткие или упругие) применяют с целью облегчения сборки и разборки, ремонта, транспортировки, эксплуатации конструкций. Неподвижные связи в технике называют соединениями.

Все виды соединений делятся на разъёмные и неразъёмные. Разъёмные соединения (резьбовые, штифтовые, клиновые, клеммовые, шпоночные, шлицевые и профильные) позволяют собирать и разбирать сборочные единицы без повреждения деталей. В большинстве случаев затяжку разъёмных резьбовых и клеммовых соединений осуществляют крепёжными изделиями: болтами, винтами, шпильками, гайками и шайбами.

Соединение деталей с помощью резьбы является одним из старейших и наиболее распространённых видов разъёмного соединения.

Резьбу получают нанесением на цилиндрическую (реже коническую) поверхность детали резьбовых канавок с сечением согласно профилю резьбы. В зависимости от формы канавок резьба бывает метрическая, трубная, трапецеидальная, прямоугольная, упорная, круглая и др. Наибольшее распространение в СНГ и других странах (кроме США и Великобритании) получила метрическая резьба, которая характеризуется углом профиля а=60 (рис. 1).


Рис. 1. Метрическая резьба.


– наружный диаметр наружной резьбы (болта);

– наружный диаметр внутренней резьбы (гайки);

– средний диаметр болта;

– средний диаметр гайки;

– внутренний диаметр болта;

– внутренний диаметр гайки;

– внутренний диаметр болта по дну впадины;

– шаг резьбы;

– высота исходного треугольника резьбы, ;

– рабочая высота профиля резьбы, ;

– радиус впадины резьбы,

Каждую резьбу характеризуют следующими параметрами: наружным диаметром резьбы болта , наружным диаметром внутренней резьбы гайки , средними и и внутренними и диаметрами резьбы, шагом резьбы , который зависит от диаметра резьбы стержня, углом подъема резьбы , числом заходов резьбы n.

Метрическую резьбу с крупным шагом обозначают буквой М и числом, выражающим в миллиметрах наружный диаметр болта, для гайки , например М6, М12 и т.д.. В обозначение резьбы с мелким шагом добавляют число выражающее в миллиметрах шаг например М6х0,6; М24х2 и т.д.

В промышленности наиболее употребляемая резьба с наружным диаметром стержня мм и шагом резьбы мм. В текстильном машиностроении чаще применяют резьбу с диаметром стержня 3, 4, 5, 6. 8, 10, 12, 16, 20 мм и крупным шагом.


Рис. 2. Рабочий чертёж болта М12х40 ГОСТ 7805-72


Рис. 3. Рабочий чертёж гайки М12 ГОСТ5945-72



Рис. 4. Рабочий чертёж пружинной шайбы 13 65Г ГОСТ 6402-70



Рис. 5. Болтовое соединение


МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕКСТИЛЬНЫЙ УНИВЕРСИТЕТ им. А.Н. КОСЫГИНА


Кафедра Детали машин и ПТУ


Лабораторная работа №2


Тема: «Определение коэффициента трения в резьбовом соединении»


Выполнил студент гр.8-99 /Сушкин О.В./


Проверил: /Хейло С.В./


МОСКВА 2002 г.

Цель работы: экспериментально определить коэффициент трения в резьбовом соединении и сравнить с данными технической литературы.


Оборудование и инструменты: стенд ДМ27М с набором деталей резьбового соединения, штангенциркуль, шаблон резьбовой.


Теоретические предпосылки.

При затяжке резьбового соединения момент на ключе идёт на преодоление момента в резьбе и момента на торце :

Подставив уравнения (2) и (3) в уравнение (1), получим

где F – осевая сила, возникающая в стержне болта при затяжке гайки, H; – средний диаметр резьбы, мм.

или по готовым таблицам по ГОСТ 24705-81;

– угол подъёма резьбы, град.; ;

– угол профиля резьбы, град.; для метрической резьбы ;

– средний диаметр опорного торца гайки, мм.

где – наружный диаметр опорного торца гайки (поз.7 на рис.);

– диаметр отверстия в стопорной шайбе (поз.6 на рис.)


Порядок выполнения работы.

  1. Заменяют размеры деталей резьбового соединения, мм: наружный диаметр болта , шаг резьбы , наружный диаметр опорного торца гайки , внутренний диаметр отверстия шайбы .

  2. Определяют допускаемые напряжения в болте , МПа

где – предел текучести материала болта, МПа; для стали 3 и стали 10 МПа; – безразмерный коэффициент запаса прочности, для болтов при постоянной нагрузке и контролируемой затяжке рекомендуют [1, с.53].

В данной работе для увеличения долговечности резьбы принимают больший коэффициент запаса прочности, равный 5.

Определяют допустимую для данного болта осевую силу , Н

где – расчётный диаметр резьбы, мм;

  1. Определяют деформацию динамометрической скобы 1, выраженную в делениях , индикатора скобы 2, под действием допустимой осевой силы , подсчитанной по формуле (6)

где – коэффициент пропорциональности; Н/дел.

  1. Собирают резьбовое соединение на стенде ДМ27М в такой последовательности: на болт 3 надевают сферическую шайбу 5 и вставляют болт в отверстие динамометрической скобы 1. На конец болта надевают стопорную шайбу 6 так, чтобы выступы шайбы вошли в углубления динамометрической скобы, и завинчивают гайку 7 до упора в стопорную шайбу.

  2. Проверяют настройку индикатора 2 динамометрической скобы и индикатора 9 динамометрического ключа. Надевают динамометрический ключ 8 на гайку 7 и плавно завинчивают гайку. При этом в стержне болта появляется осевая сила, которая деформирует динамометрическую скобу 1. Когда стрелка индикатора скобы отклонится на заданное число делений , рассчитанное по уравнению (8), записывают число делений , на которое отклонилась стрелка индикатора динамометрического ключа. После этого отвинчивают гайку и повторяют опыт несколько раз. Показания индикатора динамометрического ключа заносят в таблицу.


измерение 1-е 2-е 3-е среднее

Число делений индикатора ключа,

40

45

42

=42,3


Подсчитанное среднее значение показаний индикатора 9 на ключе. Определяют момент на ключе , Н∙м

где – коэффициент пропорциональности: Н·м/дел.

  1. После экспериментального определения момента на ключе в уравнении (4) известны все величины, кроме коэффициентов трения в резьбе и на торце. Коэффициент трения зависит от материалов трущихся пар, смазки, шероховатости поверхностей и т.д. Эти факторы практически одинаковы в резьбе и на торце гайки, поэтому принимают коэффициент трения в резьбе, равным коэффициенту трения на торце гайки. С учётом этого допущения


МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕКСТИЛЬНЫЙ УНИВЕРСИТЕТ им. А.Н. КОСЫГИНА


Кафедра Детали машин и ПТУ


Лабораторная работа №3


Тема: «Исследование прессового соединения с гарантированным натягом»


Выполнил студент гр.8-99 /Сушкин О.В./


Проверил: /Хейло С.В./


МОСКВА 2002 г.

Цель работы: Определить экспериментально силу запрессовки для группы соединений валиков и втулок, рассчитать минимальный и максимальный натяги и подобрать стандартную посадку, общую для группы соединений.


Оборудование и инструменты: Набор валиков и втулок, штангенциркуль для измерений дета­лей, стенд ДМ37 для запрессовки и выпрессовки соединений, набор эталонов поверхностей для определения высоты микронеровностей.


Порядок выполнения работы.

  1. Измеряют диаметры валика и втулки, длину рабочей поверхности втулки в соответствии с рис.



Соединение с гарантированным натягом


  1. Определяют величину микронеровностей по эталонам поверхностей (валик), (втулка).

  2. По указанию преподавателя задают глубину запрессовки (см. рис.) и заполняют таб­лицу.

    мм

    мм

    мм

    мкм

    мкм

    мм

    мкм

    мкм

    мкм

    30 50 30 0,8 0,8 5 59,6 0,05 -0,006
  3. На столе машины растяжения-сжатия ДМ30М закреплена болтами специальная под­ставка ДМ37, в которую устанавливают втулку, в отверстие втулки запрессовывают вал.

Запрессовку вала во втулку производят пуансоном, который закреплён на динамометриче­ском кольце машины. Деформацию кольца динамометра измеряют индикатором. Она про­порциональна силе запрессовки или выпрессовки. Динамометр предварительно протариро­ван. Вращением верхней рукоятки пресса машины пуансон опускают до соприкосновения с валом и затем (постепенно) запрессовывают его во втулку. При достижении заданной вели­чины записывают число делений индикатора () без останова пресса.

Коэффициенты трения покоя и движения различаются существенно, поэтому перемещения пуансона должно осуществляться плавно, без рывков на всём участке запрессовки и вы­прессовки.

После запрессовки вал и втулку переворачивают и выпрессовывают. Полученные резуль­таты записывают в таблицу.

Глубина запрессовки, мм Число делений индикатора Сила запрессовки, Н

  1. Рассчитывают силу запрессовки , Н

Н

где – коэффициент пропорциональности, Н/дел.

  1. Рассчитывают давление , МПа, на поверхности сопряжения деталей.

Па

где – коэффициент трения для прессовых соединений без нагрева ;

– номинальный диаметр соединения, мм;

– длина запрессовки, мм


  1. Рассчитывают действительный натяг , мкм

мкм

где и – коэффициенты

где – коэффициент Пуассона, для стали

– модуль упругости, для стали МПа

  1. Определяют расчётный натяг соединения , мкм, до запрессовки с учётом того, что в процессе запрессовки происходит частичная деформация и срезание микронеровностей на поверхности сопряжения деталей

мкм

  1. Определяют стандартную посадку по расчётным натягам, вычисленным по данным экспе­римента. Экспериментальные допуски деталей должны быть меньше или равны стандартным и располагаться относительно нулевой линии (номинального размера) внутри стандартных полей допусков.



Согласно рисунку допуски и посадки деталей соответствуют стандартам, если

где и – максимальные и минимальные натяги стандартных посадок соответст­венно

ш30


МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕКСТИЛЬНЫЙ УНИВЕРСИТЕТ им. А.Н. КОСЫГИНА


Кафедра Детали машин и ПТУ


Лабораторная работа №4


Тема: «Исследование конструкции цилиндрического зубчатого редуктора»


Выполнил студент гр.8-99 /Сушкин О.В./


Проверил: /Хейло С.В./


МОСКВА 2002 г.

Цель работы: Подготовка к выполнению курсового проекта. Изучение конструкции редуктора и отдельных его элементов, в частности конструкции зубчатых колес, валов и их опор, уплотне­ний крышек, корпуса редуктора и т.д. Определение основных параметров зубчатых колес и ре­дуктора. Изучение приспособлений для контроля уровня масла в корпусе редуктора. Сравнение и анализ полученных результатов.


Оборудование и инструменты: Цилиндрический редуктор, разводной ключ, отвертка, измери­тельная линейка, штангенциркуль, угломер.


Теоретические предпосылки.

В механизированных приводах машин источником движения являются электродвигатели или двигатели внутреннего сгорания. Частота вращения ротора двигателя

Частота вращения на входе исполнительного механизма значительно меньше

Создавать двигатели с такой небольшой частотой вращения трудно и экономически нецеле­сообразно.

Поэтому при передаче движения от двигателя к исполнительному механизму необходимо уменьшить частоту вращения. Одним из передающих механизмов является редуктор.

Редуктор (см. рисунок) – это механизм, служащий для уменьшения частоты вращения и увеличения крутящего момента. Каждый редуктор характеризуют передаваемой мощностью , передаточным отношением i (или передаточным числом U) и крутящими моментами Т на входном и выходном валах редуктора.

В зависимости от вида зубчатых колес различают цилиндрические, конические, червячные, волновые, планетарные редукторы.

В зависимости от числа ступеней редукторы бывают одноступенчатые, двухступенчатые, трехступенчатые.

В зависимости от отношения частот вращения на выходе двигателя и входе исполнитель­ного механизма передачи бывают понижающими и повышающими.

– передача понижающая (1>1);

– передача повышающая; её применяют значительно реже (1<1)



Кинематическая схема редуктора:

1 – одноступенчатого

2 – двухступенчатого


Передача называется мультипликатором.

Все детали и сборочные единицы редуктора располагаются в корпусе, который обычно со­стоит из двух частей: нижней, называемой основанием корпуса редуктора, и верхней, называе­мой крышкой корпуса редуктора. Корпус редуктора имеет сложную конфигурацию, и его изго­товляют чаще всего литьем из серого чугуна (ГОСТ 1412-85). На корпусе редуктора имеются следующие элементы: поясок или фланец для крепления крышки корпуса редуктора к основа­нию, лапы редуктора для прикрепления редуктора к основанию, гнезда для установки валов с подшипниками, отверстие для слива отработавшего масла, смотровая крышка для заливки но­вого масла и периодического контроля зубчатых колес, ребра жесткости для увеличения жест­кости корпуса редуктора и другие элементы.

Сборка редуктора осуществляется в следующем порядке. В корпус редуктора устанавли­вают валы с насаженными на них колесами, шестернями и подшипниками. Редуктор закрывают крышкой и провертывают болтами к корпусу. Проверяют вращение валов от руки. Приворачи­вают болтами крышки подшипников. Завинчивают маслосливную пробку. Через смотровую крышку заливают масло. Уровень масла должен быть таким, чтобы меньшее колесо было по­гружено в масло на высоту зуба. Закрепляют смотровую крышку. Редуктор готов к работе.


Порядок выполнения работы.

Определяют параметры редуктора и его отдельных элементов, найденные параметры зано­сят в таблицу.

Наименование величин 1 ступень 2 ступень
шестерня колесо шестерня колесо
Число зубьев

Ширина, мм

Наружный диаметр, мм

Угол наклона, град

Прямозубая или косозубая прямозубая
Межосевое расстояние, мм


Расчётные параметры редуктора

Наименование рас­чётных величин Формула 1 ступень 2 ступень
шестерня колесо шестерня колесо
Модуль зацепления нормальный, мм

Модуль торцевой, мм

Делительный диа­метр, мм

Диаметр окружности выступов, мм

Диаметр окружности впадин, мм

Передаточное число ступени

Передаточное число редуктора

Межосевое расстоя­ние, мм

Безразмерный коэф­фициент ширины ко­леса относительно межосевого расстоя­ния

Безразмерный коэф­фициент ширины ко­леса относительно модуля

Безразмерный коэф­фициент ширины шестерни относи­тельно её диаметра


МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕКСТИЛЬНЫЙ УНИВЕРСИТЕТ им. А.Н. КОСЫГИНА


Кафедра Детали машин и ПТУ


Лабораторная работа №5


Тема: «Изучение конструкции червячного редуктора и всей установки»


Выполнил студент гр.8-99 /Сушкин О.В./


Проверил: /Хейло С.В./


МОСКВА 2002 г.


Цель работы: Изучение конструкции червячного редуктора; аналитическое и эксперименталь­ное определение его КПД. Сравнение и анализ полученных результатов.


Оборудование и инструменты: Установка ДМ 41, сборочные единицы червячного редуктора. Изучение конструкции червячного редуктора проводят на стенде, а определение КПД – на ус­тановке ДМ 41. Она состоит из двухскоростного электродвигателя 1, муфты 2, соединяющий вал ротора электродвигателя с валом червяка червячного редуктора 3, тормозного шкива 4, смонтированного на валу червячного колеса, и охватывающих его тормозных колодок 5.


Технические характеристики установки ДМ 41

Наименование параметров Буквенное обозначение величины Значение
Число заходов червяка

Z1

2
Число зубьев червячного колеса

Z2

41
Коэффициент диаметра червяка q 12
Осевой модуль, мм m 3
Максимальный тормозной момент, Н·м

T2 max

59
Электродвигатель типа А02-22 4/2

Мощность электродвигателя, кВт

Pэ

1 и 1,4

Частота вращения ротора электродви­гателя и червяка редуктора, мин-1

nэ

1450 и 2850

Теоретические предпосылки.

  1. Изучение конструкции червячного редуктора.

Одноступенчатый червячный редуктор состоит (см.рис. и стендовые образцы) из червяка 6, червячного колеса 7, вала червяка 8, вала червячного колеса 9, опирающихся на подшипники 10 и 11, корпуса редуктора 12 и крышек подшипников.

Червяки изготавливают из углеродистых или легированных сталей. Их витки шлифуют и полируют.

При вращении витки червяка скользят по зубьям червячного колеса, поэтому червяк и чер­вячное колесо должны обладать антифрикционными свойствами. Самые лучшие антифрикци­онные свойства у пары стальной червяк и оловянно-фосфористая бронза типа Бр ОФ 10-1 (OCT 190054-72), ОНФ и др. Однако оловянные бронзы дороги и дефицитны и их применяют для из­готовления червячных колес со скоростью скольжения 5...25 м/с.

Безоловянные бронзы, например алюминиево-железистые типа БрАЖ 9-4 (ГОСТ 493-79) и др., дешевле оловянных бронз, менее дефицитны и их применяют для изготовления червячных колес, где скорость скольжения 2...5 м/с.

При скоростях скольжения меньше 2 м/с применяют серый (ГОСТ 1412-85) или модифици­рованный чугун.

Для уменьшения расхода бронзы при изготовлении червячного колеса его делают состав­ным: зубчатый венец изготовляют из бронзы, а ступицу – из чугуна или стали.

Корпус червячного редуктора изготовляют из серого чугуна или дюралюминия.

В одной ступени червячного редуктора можно реализовать большие передаточные отноше­ния (до 80). Это достоинство червячных передач.

При скольжении витков червяка по зубьям червячного колеса выделяется много тепла и происходит износ трущихся пар, что является недостатком червячных передач. Поэтому в чер­вячных редукторах надо отводить тепло. Для этого корпуса редукторов делают с ребрами, при­меняют искусственное охлаждение, например ставят вентилятор.

Внизу у корпуса редуктора имеются лапы, которыми редуктор крепится к основанию.

Валы червяка и червячного колеса вращаются в подшипниках, которые крепятся в гнездах корпуса редуктора.

В червячной передаче возникают радиальные и осевые силы, поэтому устанавливают под­шипники, воспринимающие радиальные и осевые нагрузки.

Червячные передачи дороже и сложнее зубчатых, поэтому их применяют там, где невоз­можно или нерационально применять зубчатые передачи.


  1. Определение КПД аналитическим путём.

КПД всей установки определяется из выражения

(1)

где – КПД опор электродвигателя, ;



29-04-2015, 04:04


Страницы: 1 2 3
Разделы сайта