Технология производства и товароведная оценка разных сортов мармелада

вязкую массу. Это связано с потерей лецитино—белковым комплексом значительного количества воды, которая теряется при оттаивании. При длительном хранении этот процесс усиливается. Введение поваренной соли и сахара уменьшает интенсивность этого процесса. При этом получается меланж более яркого цвета и более жидкой яркого цвета и более жидкой консистенции.

К качеству яичных мороженых продуктов предъявляются следующие требования. Цвет в мороженом состоянии у меланжа тёмно-оранжевый, к желтка палево-жёлтый, у белка от беловато-палевого до желтовато-зелёного. Вкус и запах, свойственные данному продукту без посторонних. Консистенция — в мороженом состоянии твёрдая. После дефростации, у меланжа — жидкая, однородная, у желтка — густая, но текучая масса; у белка — жидкая. Вкус меланжа, изготовленного с поваренной солью, слегка солоноватый, а у меланжа, изготовленного с сахаром, сладковатый, цвет более яркий, консистенция более жидкая, массовая доля соли не должна превышать 0,8, а сахара 5%.

Мороженый меланж, белок и желток следует хранить при минусовых температурах. Для оттаивания применяют ванны с тёплой водой (45, с продолжительностью 2,5-3ч). После вскрытия банок с продуктом его перецеживают через сита с ячейками размером не более 3мм и сразу используют в производстве.

Сухие яичные продукты. К сухим яичным продуктам относят яичный порошок, высушенный без разделения, сухой белок и сухой желток. Высушивание производят на вальцовых или распылительных сушилках.

Малая влажность сухих яичных продуктов позволяет хранить их продолжительное время. Сухие яичные продукты применяют в основном для различных мучных кондитерских изделий. Сухой белок широко используют в производстве пастильно-мармеладных изделий, сбивных конфет, сбивных карамельных начинок. Наиболее широко применяют яичный порошок, для которого используют свежие или холодильниковые яйца.

Яичный порошок получают высушиванием яичной массы в распылительных сушилках. Температура воздуха в таких сушилках достигает 130-135°С. Однако, яичная масса при сушке быстро теряет влагу, и её температура при этом не превышает 44-47°С, что очень важно для последующего использования яичного порошка, так как при этих условиях белок яйца не свёртывается, а яичная масса при смешивании с тёплой водой хорошо восстанавливается.

Яичный порошок гигроскопичен. Он интенсивно поглощает воду из воздуха, в результате качество его резко снижается. В нём образуются крупинки и комки. Ухудшаются органолептические показатели (вкус и запах). Также отрицательно влияют на качество яичного порошка кислород воздуха и свет. Влажный яичный порошок плесневеет.

Срок хранения яичного порошка зависти от условий: при температуре ниже 20°С и относительной влажности воздуха 65-75% — 6 месяцев, а при температуре ниже 2°С и относительной влажности воздуха 60-70% — 2 года со дня выработки.

К качеству яичного порошка предъявляются следующие требования. Вкус и запах — свойственные высушенному яйцу, без посторонних привкусов и запаха. Цвет — от светло-желтого до ярко-жёлтого, однородный по всей массе. Структура — порошкообразная, допускаются комочки, которые легко раздавливаются. В яичном порошке нормируется массовая доля влаги, жира, белковых веществ, кислотность и растворимость.

Подготовка яичных продуктов к производству. Распаковка яиц, поступающих в ящиках, должна производиться в специально отведенном месте, изолированном от производственных участков. При выборке яиц из ящика их тщательно очищают и укладывают в решета для санитарной обработки. Обработка осуществляется в трехкамерной ванне. В первом отделении ванны яйца в решетах выдерживают в чистой теплой воде 9-10 мин. При сильном загрязнении скорлупы ее моют волосяными щетками. Во втором отделении ванны яйца выдерживают 20 мин. в аммиачном растворе азотнокислого серебра (2 мг раствора на 1 л. воды) или в 2%-ном растворе хлорной извести в течение 5 мин. В третьей ванне яйца хорошо промываются 2%-ным раствором питьевой соды и ополаскиваются теплой проточной водой в течение 5 мин.

Обработанные яйца разбивают и выливают отдельными порциями по 5 штук в специальные чашки. Это делается для того, чтобы по запаху и отсутствию частиц скорлупы определить их пригодность к употреблению. Далее их сливают через сито (размер ячеек сита не более 3 мм.) в боле емкую посуду.

В случае если отделяют белки от желтков, их также тщательно проверяют и процеживают через сито с размером ячеек не боле 3 мм.

Банки с замороженным меланжем, белком и желтком перед размораживанием тщательно обмывают щетками в ванне с теплой водой, а затем ставят в другую ванну с горячей водой на 2-3 ч. для оттаивания (температура воды не выше 45 °С).

Размороженный меланж, белок или желток, процеживают через сито с размером ячеек не боле 3 мм или протирают на протирочной машине с таким же размером ячеек и сливают в специальные бидоны.

Размороженные яичные продукты должны быть использованы в течение 3-4 ч.

1.5 Процессы, происходящие в изделиях при изготовлении и хранении

1.5.1 Общие физико-химические свойства кондитерских товаров

Большинство кондитерских изделий имеет некоторые общие физико-химические свойства. При изготовлении и хранении этих изделий в них происходят процессы в соответствии с рядом общих физико-химических закономерностей. Это обусловливается их составом: значительным содержанием сахаров, наличием жиров и азотистых веществ.

Особое значение имеют такие свойства, как желирование, гигроскопичность, способность находящихся в изделиях сахаров к кристаллизации, жиров — к прогорканию, азотистых веществ и углеводов — к изменению при нагревании и хранении. Эти свойства кондитерских изделий влияют на их качество, изменения при хранении.

1.5.2 Процессы, происходящие при изготовлении мармелада

Процессы желирования. Мармеладный студень представляет собой полутвердое тело, проявляющее од­новременно свойства твердого и жидкого тела. При разрезании ножом образует гладкие несклеивающиеся поверхности. Марме­ладный студень образуется в результате перехода золя пектина в гель.

Пектиновые вещества представляют собой сложные органиче­ские вещества — полимеры, относящиеся к группе углеводов. В со­став пектина входят цепеобразно соединенные молекулы галактуроновой кислоты С6 Н10 О7 , которые частично этерифицированы ме­тиловым спиртом СН3 ОН. Молекулярная масса пектина колеблет­ся от 20000 до 200000 и зависит от количества молекул галактуроновой кислоты, образующих удлиненную цепь. В зависимости от количества метоксильных групп СНз, включенных в молекулу пектина, пектины разделяют на низкометоксильные и высокометоксильные.

Особенностью пектиновых веществ является их способность об­разовывать при определенных условиях студни. Пектиновые веще­ства во фруктовом пюре, применяемом для изготовления мармела­да, находятся в растворенном состоянии. Однако равновесие, су­ществующее в таком растворе, зависит от энергии притяжения— сольватации — цепных молекул растворенного вещества, то есть пектина, к молекулам растворителя — воды и может быть наруше­но в результате изменения состава растворителя и температуры.

Если средняя энергия сцепления между молекулами полимера больше средней энергии их притяжения к растворителю и энергии теплового движения, то статически возникающие и распадающиеся в растворе полимеры, ассоциенты цепных молекул, превращаются в стойкие агрегаты с низкой растворимостью. В зависимости от степени концентрации и других условий такая система представ­ляет собой студень или плотный коагулянт. Студень имеет твердый каркас, состоящий из тонких нитей, представляющих собой частич­но ориентированные молекулы пектина. Объем каркаса может со­ставлять незначительную часть от объема студня, но придавать ему значительную твердость. Внутри каркаса находится жидкая фаза, в мармеладе состоящая из воды и сахара, в которой ионы электролитов движутся свободно, так же как и в растворе.

Условия образования пектинового студня зависят в основном от структуры пектина, от содержания влаги в растворе, рН среды и температуры. Вода, как правило, обеспечивает полную раствори­мость пектина, и для образования пектинового студня необходимо разбавить ее каким-либо «нерастворителем» или плохим раствори­телем. Таким нерастворителем в условиях мармеладного произ­водства является сахар. По данным других исследователей, сахар является дегидратирующим веществом, способствующим созданию необходимой концентрации пектина для перевода его из золя в гель.

Студнеобразующая сила пектина зависит, прежде всего, от энер­гии взаимосвязи его молекул, а также от количества сахара, вве­денного для уменьшения энергии сольватации.

Характеристикой студнеобразующей способности пектина яв­ляется количество сахара, необходимое для застудневания опреде­ленного количества 1%-ного раствора пектина при прочих равных условиях. Показателем студнеобразующей способности пектина является количество пектина, которое должно быть введено в са­харный сироп определенной концентрации для получения студня данной концентрации. Чем «сильнее» пектин, тем больше сахарного сиропа он может связать, поэтому концентрация сильного пектина в студне ниже, чем слабого. При хорошем фруктовом пюре, содер­жащем сильный пектин, каркас студня укрепляется, а от избытка сахара студень становится твердым.

Студнеобразующая способность пектина зависит от его молеку­лярной массы или степени полимеризации его молекул, а также от химических особенностей его молекул или от содержания в мо­лекуле свободных карбоксильных групп и степени замещения их водородов теми или иными катионами.

Желирующая способность пектина проявляется в кислой среде, и присутствие кислоты имеет большое значение для процесса студнеобразования пектина. Как известно, кислота в определенных количествах ускоряет процесс студнеобразования, однако ее роль в этом процессе пока недостаточно изучена.

Пектиновые кислоты, находящиеся в пектиновом комплексе фруктово-ягодного пюре, содержат наряду с метоксилированными карбоксильными группами, определенное количество карбоксиль­ных групп, в которых водород замещен ионами металлов из золя пюре. Эти соли пектиновых кислот не участвуют в процессе студ­необразования. Кислота, вводимая в студнеобразующий раствор, вытесняет пектиновые кислоты из их солей, в результате чего сво­бодные пектиновые кислоты получают способность к образованию пектинового студня. Количество кислоты, необходимой для студне­образования, зависит от природы кислоты, от количества и качест­ва пектина и от содержания сахара в мармеладной массе. Следует отметить, что в условиях мармеладного производства количества кислоты, содержащегося в яблочном пюре из зимних сортов яблок, бывает, как правило, достаточно для образования прочного студня.

Мармеладный студень получается из водных растворов пектина при условии, если в растворе содержится определенное количество пектина, сахара и кислоты при рН 2,8—3,2. В мармеладном произ­водстве возможны различные соотношения сахара, пектина и кис­лоты. Для образования студня необходимо 0,8—1,2% пектина, 0,8— 1% кислоты (в пересчете на яблочную) и 65—70% сахара. Желирующее яблочное пюре содержит примерно 1,1 1,2% пектина, 0,6—1,0% кислоты (в пересчете на яблочную), 6—10% сахара и около 85—90% воды. Пектина и кислоты в пюре вполне достаточно для образования мармеладного студня, тогда как сахара не хва­тает, а воды излишек. Поэтому в процессе производства к яблоч­ному пюре добавляется сахар в отношении: 1 часть сахара на 1 часть пюре.

При указанных соотношениях пюре и сахара, т. е. при загрузке 100 частей пюре и 100 частей сахара и содержании пектина и кис­лоты в пюре по 1%, содержание пектина в рецептурной смеси со­ставит 0,5%, содержание кислоты—0,5%. Этого количества пекти­на и кислоты недостаточно, но при уваривании смеси до содержа­ния влаги 30% вместо имеющихся 45% содержание пектина в мармеладном студне возрастает до 0,8% и кислоты до 0,8%, что вполне достаточно для образования желе.

В зависимости от содержания пектина в пюре и его качества соотношение пюре и сахара может колебаться в небольших преде­лах. На 1 часть пюре добавляют 0,8—1,2 частей сахара. Указанное соотношение зависит не только от содержания пектина в пюре, но и от количества кислоты. Некоторое влияние на рецептуру оказы­вает содержание в пюре дубильных веществ, золы и других ве­ществ. Обычно наряду с определением содержания пектина в пюре делают в лаборатории мармеладную пробу и на основании этого устанавливают рецептуру.

По новой схеме мармеладного производства, разработанной на московской кондитерской фабрике, в пюре до добавле­ния сахара вводится лактат натрия NаC3 H5 O3 или цитрат натрия Nа3 C6 H5 O7 . Указанные соли получаются нейтрализацией молочной или лимонной кислоты двууглекислой содой NaHCOз или кальци­нированной содой Nа2 CO3 .

Применение лактата натрия или цитрата натрия дает возмож­ность сдвинуть начало студнеобразования в сторону меньшей оста­точной влажности, а также уменьшить нарастание инвертного са­хара в процессе варки. Без применения лактата натрия массу при­ходилось уваривать до влажности 38—40%.

Количество добавляемого лактата натрия зависит от кислот­ности яблочного пюре, а также от желаемой длительности студне­образования. Чем выше кислотность пюре, тем больше надо вво­дить лактата натрия, и чем дольше должно происходить студнеобразование мармеладной массы, тем больше надо вводить лактата. При уваривании яблочно-сахарной смеси до остаточной влаж­ности 30% и при длительности студнеобразования около 30 мин добавляют от 0,15 до 0,35% лактата натрия к рецептурной смеси при содержании кислоты в яблочном пюре от 0,5 до 0,9 %. Так как лактат натрия и другие буферные соли сдвигают рН среды, то добавление их задерживает инверсию сахарозы в процессе варки, поэтому часто происходит засахаривание мармеладной массы от недостатка инвертного сахара. Для предупреждения засахаривания мармелада и образования грубой корочки в рецептурную смесь вводят заранее приготовленный инвертный сахар.

Введение буферных солей смещает рН в щелочную сторону на 0,3-0,8, вследствие этого ослабляется физиологическое ощущение кислотности и приходится добавлять кислоту в готовую мармеладную массу.

Гигроскопичность. Это свойство выражается в способности твердых и жидких тел при известных условиях поглощать водяные пары, находящиеся в воздухе. Гигроскопичность — свойство, присущее в той или иной степени всем растворимым в воде веществам, а также коллоидным капиллярно-пористым телам.

Явления гигроскопичности объясняются физико-химическими законами. Основное значение имеют упругость паров воды, находящихся в воздухе, и упругость паров воды над растворами гигроскопического вещества.

В процессе увлажнения различных продуктов, состоящих в основном из растворимых в воде веществ, например, при увлажнении мармелада, сахара и т.п. изделий, различают несколько стадий: первая стадия — сорбция водяных паров поверхностью продукта; вторая — частичное растворение продукта в поверхностном слое в поглощенной влаге и образование на поверхности слоя насыщенного раствора, имеющего при данной температуре определенную упругость пара; третья — взаимодействие образовавшегося слоя с окружающим воздухом. Если упругость паров над раствором поверхностного слоя меньше, чем упругость паров окружающего воздуха (Рр<Рв), то этот слой поглощает влагу из воздуха до наступления рав­новесия между упругостью паров над раствором и воздуха. Если упругость паров над раствором больше, чем упругость паров окружающего воздуха ( Рр> Рв), то происходит потеря влаги. Если же упругости паров воздуха и паров над насыщен­ным раствором равны (Рр=Рв), то не будет ни поглощения, ни потери влаги в поверхностном слое.

Наряду с указанными стадиями в гигроскопичных продук­тах рассматриваемого типа будут происходить вторичные про­цессы. Если образовавшийся на поверхности слой раствора на­сыщенный, он может растворять находящийся под ним продукт с образованием пересыщенного раствора. Если раствор будет ненасыщенным, в нем может происходить диффузия влаги с по­верхности внутрь с дальнейшим растворением находящегося внутри продукта. Образованию пересыщенных растворов будут способствовать колебания температуры в помещении, где хранятся изделия. При повышении температуры раствор, особенно если в нем преобладает сахароза, будет становиться ненасыщенным, так как растворимость сахарозы и большинства других растворимых углеводов с повышением температуры зна­чительно возрастает. При понижении температуры раствор сделается перенасыщенным. В нем будет происходить кристал­лизация сахара.

Если относительная влажность окружающего, воздуха на­столько высока, что упругость паров воздуха больше упругость паров над насыщенным раствором, поверхностный слой раствора будет поглощать влагу из воздуха до тех пор, пока упругости паров воздуха и раствора не станут одинаковыми. В этом случае наступит динамическое равновесие по влажности между поверхностным слоем и окружающим воздухом. Однако по­верхностный слой уже не будет насыщенным, в нем происходит диффузия воды, которая растворяет находящийся внутри про­дукт. Изменение (повышение) концентрации раствора вызовет нарушение равновесия между ним и окружающим воздухом, что поведет к дальнейшему поглощению влаги и, следова­тельно, растворению продукта. В результате при этих условиях продукт будет все больше увлажняться, вплоть до полного его растворения.

Протекание процессов увлажнения гигроскопичных продук­тов в практических условиях может усложняться. Так, если температура окружающего воздуха выше, чем у продукта, то при достаточно высокой относительной влажности может про­исходить конденсация влаги из воздуха на более холодном про­дукте с образованием на поверхности раствора. Дальнейшие процессы происходят в соответствии с указанным выше.

Процесс сорбции пара (поглощение паров воды колло­идным капиллярно-пористым телом)—сложный процесс. Он состоит из процесса диффузии пара из окружающей среды к По­верхности вещества (сорбента), процесса внутренней диффузии пара по капиллярно-пористой системе сорбента и адсорбции-явления самопроизвольного сгущения в поверхностном слое массы вещества, понижающего своим присутствием поверхностное натяжение.

Здесь уже не происходит вторичных процессов собственно растворения вещества в поверхностном слое. Однако после ад­сорбции влаги обычно следуют явления ее капиллярной кон­денсации и осмотического поглощения сложно построенными коллоидными частицами. Капиллярная конденсация в процессе сорбции основана на понижении давления насыщенного пара над вогнутыми менисками капилляров, присущих этим коллоидным телам. Наибольшее количество влаги, которое может принять материал, находясь в атмосфере влажного воздуха, является максимальной сорбционной влагоемкостью пористого сорбента в паровоздушной среде. Эта максимальная сорбционная влагоемкость называется гигроскопической, или равновесной, влажностью.

Высыхание ряда изделий происходит в тех случаях, когда влажность их выше, чем гигроскопическая влажность, чем упругость паров над раствором, входящим в состав изделий (Рр>Рв). Высыха­ние изделий часто сопровождается кристаллизацией сахаров— засахариванием.

Кристаллизация сахаров. Засахаривание наблюдается во многих кондитерских изделиях. На образование кристаллов са­хара, как и других растворимых в воде кристаллизующихся ве­ществ, влияет ряд факторов, что видно из следующего уравне­ния для скорости кристаллизации:

где К— скорость кристаллизации;

Т — температура (абсолютная);

С—концентрация сахара


29-04-2015, 04:17


Страницы: 1 2 3 4 5 6 7 8 9 10
Разделы сайта