Технология производства и товароведная оценка разных сортов мармелада

в кристаллизующемся пере­сыщенном растворе;

с— концентрация сахара в насыщенном растворе;

—вязкость среды;

r—путь диффундирования сахара между зонами рас­твора с концентрациями С и с;

k—некоторая постоянная величина.

Скорость кристаллизации тем больше, чем выше температура, больше избыточное пересыщение (С—с), меньше вязкость раствора и путь диффундирования сахара. Скорость кристал­лизации понижается при увеличении количества примесей (не сахаров). Содержание сухих веществ в насыщенном сахарном растворе тем больше, чем больше примесей содержится в нем, поэтому и вязкость таких растворов больше.

Необходимым условием кристаллизации является наличие достаточного количества центров кристаллизации, иначе даже сильно пересыщенный раствор не будет кристаллизоваться. Центры кристаллизации, если их нет в жидкой среде, могут самопроизвольно возникать в ней при некоторых условиях благо­даря наличию в жидкости гетерофазных флуктуаций—небольших участков, имеющих такое же расположение молекул, как в кристалле. Они могут возникать и на посторонних примесях.

Переход вещества при его охлаждении из расплавленного состояния в стеклообразное облегчается в ряде случаев. Имеет значение величина энергии, затрачиваемой на образование по­верхности раздела между жидкой и твердой фазами. Если кри­сталлик меньше некоторого критического размера, эта поверхностная энергия превышает выигрыш в энергии, связанный с переходом в более устойчивое состояние. Поэтому энергетически более выгодным и, следовательно, вероятным будет разрушение кристаллика. При больших переохлаждениях жидкости скорость роста кристалликов становится для ряда веществ практически равной нулю, что соответствует переходу в стек­лообразное состояние. Необходимым условием такого перевода является малая подвижность в это время молекул в данном веществе.

Ряд факторов способствует кристаллизации и ускоряет ее. Понижение температуры ускоряет кристаллизацию из раствора, так как растворимость сахаров при этом значительно уменьшается и влияет сильнее, чем повышение вязкости и прямое действие понижения температуры в соответствии с уравнением. Уменьшение влажности изделий, их высыхание тоже ускоряет кристаллизацию, так как при этом увеличивается концентрация сахара и, следовательно, степень перенасыщения. Изделия с большим содержанием других, кроме сахара, компо­нентов засахариваются медленнее, задерживается кристаллиза­ция и в изделиях, отличающихся высокой вязкостью или на­личием антикристаллизаторов. К последним относятся обычно вещества, не имеющие кристаллической структуры, с высо­ким молекулярным весом и повышенной вязкостью растворов.

Обычно при засахаривании изделий происходит образование кристаллов сахарозы, однако в некоторых случаях кристаллизуется глюкоза; это характерно для глюкозного засахаривания. Фруктоза не кристаллизуется в кондитерских изделиях вследствие большой ее растворимости.

При изготовлении кондитерских изделий с молочными про­дуктами могут иметь место и превращения молочного сахара-лактозы, дисахарида, в состав которого входят глюкоза и галактоза. Существует две формы этого сахара—-лактоза и -лактоза. Лактоза малорастворимая в воде, она наименее рас­творима из всех сахаров. При температуре ниже 93,5°С кри­сталлизуется - форма лактозы с одной молекулой воды, а при более высоких температурах выпадает безводный -изомер лак­тозы. При охлаждении растворов -формы лактоза переходит в -форму. При уваривании кондитерских масс, содержащих молоко, равновесие перемещается в сторону образования -формы, а при охлаждении -форма опять преобразуется в -форму, которая может выкристаллизовываться как менее растворимая. Растворимость -формы примерно в 1,5 раза больше, чем -формы и зависит от температуры (например, при 20° С рас­творимость -формы 6,2%, -формы—9,9%).

При концентрации лактозы в растворе ниже 3% опасность в се кристаллизации отпадает. Если лактоза находится в смеси с другими сахарами, то она несколько снижает растворимость сахарозы и глюкозы.

Изменение углеводов при нагревании. Процессы изменения углеводов при нагревании весьма многообразны. Возможно об­разование многих соединений в зависимости от исходных ин­тенсивности и режима нагревания, реакции среды, присутствия соединений, играющих роль катализаторов и антагонистов ре­акции тех или иных типов.

При нагревании сахаров в слабокислой или нейтральной среде, т. е. в условиях обычно встречающихся в производстве кондитерских изделий, образуется сложная по составу смесь продуктов изменения сахаров.

Если нагревание водных растворов сахаров (например, при уваривании карамельной массы) вести при значительно повы­шенных температурах или, что более вероятно, в условиях местного перегрева (при температуре выше 150—160°С), слишком длительной температурной обработки, может произойти значительная деструкция углеводов, для характеристики которой применяется термин «карамелизация».

При выпечке мучных кондитерских изделий, например, штампованного печенья, чрезмерно высокая температура печи (на­много выше 260°С) или увеличенная продолжительность выпечки (значительно более 6—8 мин) вызывают сильное потемнение, образование подгорелых мест. Эти процессы происходят в результате изменения растворимых сахаров, входящих в состав теста для мучных кондитерских изделий: сахарозы, глюкозы, фруктозы (из сахарозы, меда и т. п.), лактозы (из молочных продуктов). Деструкция крахмала под влиянием высоких температур, как известно, тоже ведет к образованию ангидридов глюкозы, карамелизации углеводов.

Продукты изменения сахаров при их нагревании в обычных, близких к нормальным, условиях производства могут содержать главным образом следующие соединения: ангидриды сахаров; оксиметилфурфурол и другие карбонильные соединения — диоксиацетон, глицериновый альдегид и др.; кислые продукты изменения—левулиновую, муравьиную, молочную кислоты; окрашенные соединения—гуминовые и красящие вещества и др. Нагревание глюкозы в нейтральной или слабокислой среде, прежде всего, вызывает дегидратацию сахара с выделением одной или двух молекул воды. Ангидриды сахаров могут частично соединяться один с другим или с неизмененным сахаром и образовывать так называемые продукты реверсии—конденсации. Дальнейшее тепловое воздействие вызывает отделение третьей молекулы воды с образованием оксиметилфурфурола и последующими реакциями. При обычной тепловой обработке углеводы, вероятно, не претерпевают глубоких изменений, а образуются в основном их ангидриды.

Превращение сахаров при нагревании, по-видимому, идет через форму с открытой карбонильной группой (оксоформу).

Глюкоза при нагревании может дать соединение (левоглюкозан), в отличие от нее вращающее плоскость поляризации влево.

Левоглюкозан не обладает восстанавливающими свойствами и в присутствии кислоты снова превращается в глюкозу. Фруктоза в присутствии щелочей и кислот разлагается очень быстро. Она, возможно, является основным источником образования молочной кислоты при нагревании. Фруктоза способна к образованию диангидридов. Один из них — дигетеролевулезан — может образовываться при сравнительно мягких условиях реак­ции. В этом случае вода удаляется из двух молекул фруктозы.

При нагревании сахарозы в нейтральной или слабокислой среде наряду с инверсией (образованием глюкозы и фруктозы) происходит накопление соединений с различной молекулярной массой.

При нагревании сахарозы в сухом виде до 150°С происходит разрыв глюкозидной связи и образуется глюкоза и остаток фруктозида, который может образовывать - и -фруктозидные связи с сахарозой и глюкозой. При приготовлении инвертного сиропа из сахарозы образуются не только глюкоза и фруктоза, но и продукты их изменения. При получении инвертного сиропа в присутствии инвертазы в сиропе, например, обнаружена кестоза—соединение фруктозы с сахарозой.

Производство изделий губчатой структуры (пастилы, зефира, сбивных конфет). Сбивной слой имеет губчатую структуру. Такие изделия формуют из пенообразных масс, в которых дисперсионной средой является сахаро-фруктово-белковый, сахаро-пектиново-белковый или сахаро-агаро-белковый золь, способный при определенных условиях переходить в гель или студень, а дисперсной фазой - недоформированные пузырьки воздуха.

Пены являются ячеисто-пленчатыми дисперсионными системами, образованными большим количеством пузырьков воздуха, разделенных тонкими пленками дисперсионной среды. Под влиянием силы притяжения дисперсионная среда течет, пленки пены становятся более тонкими, и пузырьки воздуха лопаются, или объединяются, пена коалесцирует, т.е. оседает. Для получения пены необходимы затраты энергии для преодоления силы поверхностного натяжения дисперсионной среды.

В кондитерской промышленности для введения в массу воздуха применяется сбивание. Для облегчения процесса сбивания и получения более устойчивых пен вводят пенообразователи. Наиболее распространенным пенообразователем в кондитерском производстве является свежий или замороженный белок куриных яиц. Можно применять и сухой, полученный при температуре не выше 45 С.

Дисперсность воздушных пузырьков зависти от природы пенообразователя, его доли и других факторов.

Например, средний размер воздушных пузырьков в пастильной массе, сбитой с яичным белком, равен 15-25 мкм, размер пузырьков в этой же массе, сбитой в тех же условиях, но с молочным гидролизатом, - 30-40 мкм.

При повышении концентрации пенообразователя масса приобретает более высокую дисперсность, структурно-механические свойства ее изменяются: уменьшается текучесть и увеличивается предельное критическое напряжение сдвига.

Чем выше и меньше вязкость раствора, тем лучше пенообразование, меньше плотность пенообразной массы. Например, при увеличении концентрации пенообразователя от 1 до 3,75% (при концентрации сахара 75%) содержание воздуха в сбитой массе при одинаковых условиях сбивания повышается от 34 до 59%, плотность массы уменьшается с 905 до 580 кг/м3 . Средний радиус пузырьков воздуха уменьшается с 12 до 2,5-3,5 мкм.

На пенообразующую способность яичных белков большое влияние оказывают сахар, яблочное пюре, патока, агар (и др. желирующие вещества) и прочие добавки.

Характеристика пенообразователей и условия получения пенообразных масс.

Пенообразующая способность яичных белков сильно снижается, если к белку добавить жиры (с желтком) или вещества с более высокой поверхностной активностью.

Соли кальция, магния снижают действие пенообразователей. Сухой белок вырабатывается в виде порошка белого цвета и стекловидной крошки жёлтого цвета. В целях повышения пенообразующей способности этот белок до сушки подвергают ферментативному гидролизу.

Во ВНИИ молочной промышленности разработаны новые пенообразователи из гидролизатов молочного белка, в которых содержатся остаточный казеин и промежуточные продукты распада.

В Голландии вырабатывают пенообразователь хайфоама, являющийся также продуктом гидролиза казеина.

Все пенообразователи, изготовленные на основе молочного белка, довольно хорошо образуют пену лишь в нейтральных и слабо кислых средах. Поэтому они применяются при изготовлении некоторых сбивных сортов конфетных масс и неподкисляемых сбивных масс для многослойного желейного мармелада.

Качество пенообразных структур характеризуется объёмной концентрацией дисперсной фазы, структурно-механическими свойствами.

Дисперсность пенообразной структуры определяет вкусовые ощущения и зависит от концентрации пенообразователя и его природы. Увеличение доли сахара в кондитерской пенообразной массе повышает её вязкость, благодаря чему замедляется её разрушение, но затрудняется пенообразование.

Пектиновые вещества яблочного пюре, адсорбируясь на плёнках воздушных пузырьков, повышают прочность и стойкость пенообразной массы и практически не влияют на дисперсность. Патока является антикристаллизатором и предотвращает засахаривание изделий.

1.5.3 Производство фруктово-ягодного мармелада

Процесс получения фруктово-ягодного мармелада состоит из следующих стадий: подготовки сырья, подготовки рецептурной смеси, уваривание мармеладной массы, разделки массы, отливки формы (формовой) или лотки (пластовый), сушки (формовой), выстойки (пластовый), упаковки.

Подготовка сырья. Смешивают (купажируют) различные партии яблочного пюре в зависимости от качественных показателей (содержание сухих веществ, студнеобразующая способность, кислотность, цветность и др. показатели). Полученную смесь протирают через сита с отверстием диаметром не более 1 мм, купажирование производят в емкостях из нержавеющей стали, оборудованных мешалками. Кристаллические пищевые кислоты растворяют в воде в соотношении 1:1 и фильтруют через тонкую ткань или несколько слоев марли. Фильтруют и молочную кислоту, которая поступает в виде раствора обычно в концентрации 40%. Сахар протирают через сита с отверстием диаметром не более 3 мм и пропускают через магниты для удаления металлопримесей.

Патоку процеживают в подогретом состоянии через фильтры с отверстием диаметром не более 2 мм.

Приготовление рецептурной смеси. Рецептурную смесь получают путем смеси купажированного, протертого яблочного и ягодного пюре с сахаром-песком и патокой. Обычно соотношение пюре и сахара составляет 1:1. При изготовлении ягодных видов мармелада (сливового, ежевичного и др.) яблочному пюре без введения пюре др. видов полученную массу называют яблочной, а полученный из нее мармелад — яблочным.

Предусмотренное унифицированными рецептурами количество пюре, вводимое в рецептурную смесь, корректируют по данным лабораторного анализа в зависимости от содержания в нём сухих веществ и студнеобразующей способности. Студнеобразующая способность пюре обусловливается в значительной степени качеством и количеством содержащегося в нём пектина. Для образования хорошего мармеладного студня в нём должно содержаться 0,8 - 1,2 % пектина, 65-70% сахара и 0,8-1 % кислоты (в пересчёте на яблочную). Эти соотношения могут несколько изменяться в зависимости от качества пектина, содержащегося в пюре. В связи с этим на производстве обычно оптимальное соотношение основных компонентов рецептуры уточняют путём проведения пробных варок.

В рецептурную смесь кроме основных видов сырья (пюре, сахар, патока) вводят соли-модификаторы: лактат натрия или динатрийфосфат, возможно применение и других солей, например цитрата натрия и татрата натрия. При введении этих солей снижаются скорость и температура застудневания мармеладной массы, вязкость массы при уваривании. Вследствие этого при внесении солей-модификаторов возможно уваривание до более высокого содержания сухих веществ, что обусловливает значительное сокращение продолжительности сушки. В результате продолжительность всего производственного цикла изготовления фруктово-ягодного мармелада намного сокращается. Соли-модификаторы, кроме того, оказывают положительное воздействие, значительно снижая интенсивность процесса гидролиза сахарозы и в некоторой степени пектина и других веществ. При введении солей-модификаторов процесс образования редуцирующих веществ под воздействием кислоты, содержащейся в пюре, существенно замедляется. Оптимальная дозировка солей-модификаторов, вводимых в рецептурную смесь, зависит от кислотности используемого пюре. Чем выше кислотность, тем больше необходимо ввести солей-модификаторов. Соли-модификаторы вносят в рецептурную смесь непосредственно в фруктово-ягодное пюре до введения сахара. Рецептурную смесь приготовляют периодическим способом в ёмкостях, оборудованных мешалками. После введения всех компонентов массу тщательно перемешивают и подают на уваривание.

Уваривание мармеладной массы. Мармеладную массу в настоящее время уваривают в змеевиковых аппаратах. Можно уваривать массу также в вакуум-аппаратах периодического действия (сферических аппаратах), а также в универсальных варочных аппаратах.

Змеевиковый варочный аппарат состоит из стального корпуса (варочной колонки), внутри которого расположен медный змеевик. Внутрь цилиндра подается пар давлением 294—392 кн/м2 (3—4 ат). Рецептурная смесь влажностью 45—50% плунжерным насосом непрерывно подается в змеевик варочной колонки, где происходит уваривание. Сваренная масса с температурой 106—107°С из змеевика попадает в пароотделитель, где происходит отделение сокового пара.

Мармеладная масса, приготовленная без лактата натрия, имеет влажность 38—40%, а с лактатом натрия 26—32%.

Готовая масса самотеком поступает в сборник-смеситель, куда добавляются вкусовые и ароматические вещества: кислота, припасы, эссенция и красители. После тщательного перемешивания масса поступает на разливку.

Сферические аппараты для уваривания мармеладной массы применяются с мешалкой и без мешалки. Их полезная емкость не должна превышать 150л.

В рецептурную смесь, предназначенную для уваривания в сферическом аппарате, вводится сахара 95% от количества, предусмотренного рецептурой, остальное же количество ее добавляется в конце варки или после ее окончания. Уваривание производят при давлении греющего пара 294—392 кн/м2 (3—4 ат) и остаточном давлении 34,6-—48 кн/м2 (разрежении 400—500 мм рт. ст.).

Готовность сваренной массы определяется по влажности с помощью рефрактометра, а также пробой на «садку» (определение качества желе). Для этого разливают небольшое количество массы в несколько ячеек мармеладной формы и определяют скорость образования желе и его прочность.

Продолжительность уваривания зависит от величины загрузки массы и влажности рецептурной смеси и составляет в среднем 15— 20 мин. Сваренную массу выгружают из вакуум-аппарата в смесители или медные котлы, куда добавляют вкусовые и ароматические вещества, а также 5—10% сахарного песка, который был исключен при составлении рецептурной смеси (так называемый «второй сахар»).

Такой метод дает возможность управлять процессом студнеобразования и предотвращать выпадение пектинового студня из мармеладной массы. Преждевременное образование пектинового студня возможно при благоприятном соотношении сахара, пектина и кислоты в мармеладной массе. Уменьшение количества сахара, вводимого перед увариванием, исключает такую возможность.

Благодаря введению «второго сахара» в конце или после уваривания снижается температура кипения массы и тем самым уменьшается нарастание инвертного сахара. В случае преждевременного образования студня в конце или. сразу после уваривания такой студень непригоден для дальнейшей обработки и может быть использован для приготовления подварки или повидла.

При непрерывном уваривании мармеладной массы в змеевиковом аппарате с применением лактата натрия процесс идет быстро, поэтому преждевременного желеобразования пектина не бывает и нарастание инвертного сахара происходит медленно. В связи с этим нет необходимости добавлять сахар после окончания процесса.

Мармеладную массу можно уваривать также в универсальном варочном аппарате. Универсальный варочный аппарат состоит из двух котлов, расположенных один над другим. Верхний котел снабжен мешалкой и паровой рубашкой. В нижней части котла имеется отверстие, соединяющее верхний котел с нижним и закрывающееся клапаном. Нижний котел не имеет парового обогрева и соединён с конденсационной установкой.

Рецептурную смесь загружают в верхний котел и уваривают в течение 6-8мин при давлении пара 392—491 кн/м2 (4—5 ат) и непрерывном перемешивании до влажности 31—33%, а затем откры­вают клапан и перепускают массу в нижний котел. При разрежении масса дополни­тельно концентрируется. Сюда же добавляются вкусовые и ароматические вещества и, если требуется, сахар. Готовая мармеладная мас­са содержит 30—32% влаги и 13—17% редуцирующих ве­ществ.

Разливка мармелада в формы, застудневание и выборка из форм. Для разливки мармелада при­меняется мармеладоотливочная машина, которая производит отливку мармелада в формы и выборку его из форм после застудневания.

Готовая мармеладная мас­са коловратным насосом пере­качивается по трубе в воронку отливочного механизма и при помощи дозаторов разливается в металлические формы. Фор­мы проходят через механиче­ский встряхиватель и поступа­ют в камеру охлаждения, где происходит желирование мар­мелада. После этого формы с мармеладом передаются на нижнюю ветвь транспортера и подогреваются для облегчения выборки мармелада. Подогре­тые формы поступают в выбо­рочный механизм, где марме­лад пневматически выталки­вается из форм на решета.

На небольших предприя­тиях применяется еще ручная разливка. Мармелад разлива­ют из воронок в формы, которые представляют собой плитки из белой глины с углублениями, покрытые глазурью. Применяются


29-04-2015, 04:17


Страницы: 1 2 3 4 5 6 7 8 9 10
Разделы сайта