Согласно рецепторной теории HLA-антигены могут быть своеобразными рецепторами для патогенных вирусов, на которых они могут фиксироваться и повреждать клетку. Однако многие ученые предполагают, что под генетическим контролем могут находиться различные этапы взаимодействия вируса с клеткой, начиная от проникновения вируса в клетку и его репликацией и заканчивая трансформацией клетки под влиянием вирусного генома.
Некоторые вирусы (например, вирус кори) могут вызывать заболевание практически у любого человека. Эти данные указывают на то, что антигены системы HLA не являются рецепторами для вирусов.
Согласно теории мимикрии, микроорганизмы в процессе эволюции приобретают в структуре своих оболочек детерминанты, сходные с тканевыми антигенами человека. Это ведет к снижению иммунного ответа макроорганизма на тот или иной микроб или вирус, в результате чего они могут беспрепятственно проникать внутрь организма и вызывать патогенное действие.
Если придерживаться теории мимикрии, то можно ожидать доминантного характера наследования генов, ответственных за восприимчивость к болезни. Семейные исследования заболеваний в большинстве случаев подтверждают это. Однако по ряду заболеваний получены другие результаты.
Ученые, придерживающиеся теории модификации антигенов HLA вирусами, предполагают, что вирус при определенных условиях способен модифицировать антигены системы HLA. Это может иметь место при включении вирусного генома на уровне гена HLA или при его действии на РНК. Отмеченное явление может происходить лишь при избирательной локализации вируса в тканях, например, вируса гепатита B в печени. Эту гипотезу пока нельзя отвергнуть, но и доказать не представляется возможным.
Исследованиями, проведенными на мышах, показано, что гены Н-2 системы сцеплены с генами так называемого иммунного ответа - Ir. Гены этой области контролируют способность индивидуума к развитию иммунного ответа на различные искусственные и естественные антигены, причем этот ответ четко коррелировал с Н-2 гаплотипами. Линии мышей с гаплотипом Н-2b оказались способными давать сильный иммунный ответ на искусственный полипептид, а с гаплотипом Н-2k низкий ответ
В связи с полученными данными возникает вопрос, детерминируют ли иммунный ответ сами гены Н-2 или этот зависит от других генов, тесно сцепленных с ними. По мнению J. vanRood именно гены иммунного ответа являются как бы биологическим эквивалентом специфических вакцин.
Можно полагать, что индивидуумы, у которых отсутствуют гены, определяющие резистентность к какому-либо заболеванию, окажутся восприимчивы к нему, и наоборот. Данные, полученные на животных, можно перенести на человека лишь по аналогии, поскольку пока у людей гены иммунного ответа не обнаружены. Правда, имеются свидетельства об их присутствии в организме человека.
Таким образом, приходится констатировать, что ни одна из рассматриваемых теорий не может в полной мере объяснить связь HLA-антигенов с различными заболеваниями. Но есть вероятность, что каждая из предложенных гипотез, вносит свой вклад в восприимчивость к инфекционным заболеваниям.
1.3 Общее представление о туберкулезе и его ассоциация с различными генетическими факторами
Туберкулез или "Белая чума" был преобладающей проблемой здравоохранения в Европе и Америке в 18-м, 19-м и начале 20-го столетия. Значительные усилия были потрачены на решение этой проблемы. С появлением эффективной антибиотикотерапии в 50-х годах 20-го столетия, распространенность заболевания и интерес к нему резко упали. С конца 80-х, однако, начался всплеск заболеваемости туберкулезом в развитых странах наравне с развивающимися странами Восточной Европы, что послужило возрождению исследований туберкулеза и его возбудителя. Многие из вопросов прошлого теперь решаются на молекулярном уровне [8].
Один из основных вопросов, который занимал раньше исследователей, это взаимодействие микобактерий и защитных факторов организма, от которого зависит, будет ли человек заражен и разовьется ли у него туберкулез. Обсуждение причин туберкулеза уходит корнями в древнюю Грецию и Рим. В то время было составлено три различных объяснения заболеванию: наследственные факторы, инфекционный компонент и плохие условия окружающей среды. Гиппократ отдавал предпочтение наследственным факторам, Аристотель и Гален - инфекционному компоненту. Поскольку болезнь была больше распространена среди городской бедноты в быстро растущих городах недавно индустриализованной Европы, социальные реформаторы того времени связывали туберкулез с плохими условиями жизни рабочего класса и отвергали контагеозное объяснение. Хотя в последнее время и отдается предпочтение генетическому компоненту, в действительности же все три объяснения правильны и взаимосвязаны.
В 1882 году Кохом были открыты туберкулезные бациллы, что опровергло теории наследственного возникновения болезни или вследствие нездорового образа жизни низших слоев. Но некоторые аспекты эпидемиологии туберкулеза так и не были объяснены, так как выяснилось, что есть индивидуальные различия в восприимчивости: не все, подвергшиеся атаке микобактерий становятся инфицированными; даже когда инфекция может быть продемонстрирована с помощью положительной туберкулиновой пробы, приблизительно у одного из десяти зараженных людей развиваются симптомы болезни; течение болезни изменяется у различных людей (до антибиотикотерапии некоторые умирали от "скоротечного туберкулеза", в то время как другие выздоравливали или жили относительно долго с признаками хронического туберкулеза; у некоторых же болезнь развивалась лишь спустя годы после инфицирования). Без лечения туберкулез является фатальным для половины пациентов, у которых развились симптомы [16].
Поскольку туберкулез больше распространен в отдельных семьях и расовых или этнических группах, наследственная теория восприимчивости была наиболее вероятна, но требовала экспериментальных доказательств и имела трудности в устранении влияния компонента окружающей среды. В 1912 году статистик Карл Пирсон, пытаясь продемонстрировать расовые различия в восприимчивости к туберкулезу, задался вопросом о том, имеют ли люди, живущие в одинаковых условиях одинаковый шанс развития туберкулеза вне зависимости от их расы.
В наше время туберкулез является проблемой мирового масштаба. По данным Всемирной организации здравоохранения на 2008 год более двух миллиардов человек, то есть приблизительно треть населения Земли, инфицирована микобактериями. 1,7 миллионов человек умерла от туберкулеза в 2006 году, из которых 231 000 ВИЧ-инфицированных. Это приблизительно 4500 смертей ежедневно. В 2006 году было зарегистрировано 9,2 миллиона новых случаев туберкулеза, включая 709 000 среди ВИЧ-инфицированных [44].
В России ежегодно инфицируется более 9 тыс. детей (что на порядок выше, чем в других развитых странах), а число больных в 1997 г. по сравнению с 1991 г. выросло в 2,5 раза [12].
1.3.1 Иммунный ответ при туберкулезе
Клинические признаки туберкулеза проявляются только у 10% инфицированных. В настоящее время стало понятно, что развитие инфекции М. tuberculosis и клинический туберкулез обусловлены сложным взаимодействием между биологическими свойствами самого инфекционного агента, средовыми факторами и физиологической индивидуальностью человека [33].
У большинства людей сразу же после инфицирования микобактериями развивается эффективный иммунный ответ, ограничивающий распространение агента. Менее 10% инфицированных, у которых развивается заболевание, имеют идентифицируемые факторы риска, такие как диабет, СПИД, пожилой возраст и т.д. У остальных заболевших развитие туберкулёза, по-видимому, обусловлено комплексным взаимодействием генетических и средовых факторов [15].
Основная протективная роль в иммунном ответе, направленном против внутриклеточных микобактерий туберкулеза принадлежит клеточным механизмам. Способность микобактерий переживать и размножаться внутри клеток делает их защищенными от действия антител и системы комплемента. Резистентность к антимикробным факторам макрофагов позволяет им длительно переживать внутри этих клеток. Для элиминации их из организма необходим специфический клеточно-опосредованный ответ. Специфичность его определяется антиген-распознающими CD8+ Т-лимфоцитами, которые пролиферируют, активируются и формируют клон эффекторных цитотоксических лимфоцитов [1].
Решающий момент специфического иммунного ответа - это ответ CD4 - T-лимфоцитов хелперов на распознавание антигена. На этом этапе определяется форма иммунного ответа: с преобладанием антител (гуморального) или с преобладание клеточных реакций (гиперчувствительности замедленного типа). Направление дифференцировки CD4 лимфоцитов, от которого зависит форма специфического иммунного ответа, контролируется цитокинами, образующимися в ходе воспалительной реакции. Так, в присутствии интерлейкина-12 и ИФ-γ CD4-лимфоциты дифференцируются в воспалительные Th1-клетки, начинают продуцировать и секретировать ИЛ-2, ИФ-γ, ТНФ, и определяют клеточный характер специфического иммунного ответа. Присутствие ИЛ-12 обеспечивается его продукцией макрофагами, а ИФ-γ - естественными киллерами, активированными в раннюю фазу на внутриклеточно паразитирующие микобактерии [4].
В течение 2-8 недель после первичного инфицирования, пока микобактерии продолжают размножаться внутри макрофагов, в организме человека развивается опосредованная Т-клетками ГЗТ. Иммунокомпетентные лимфоциты поступают в зону проникновения возбудителя, где они секретируют такие хемотаксические факторы, как интерлейкины и лимфокины. В ответ на это сюда же мигрируют моноциты и трансформируются в макрофаги, а затем - в гистиоцитарные клетки (макрофаги in situ), позднее организующиеся в гранулёмы [9]. Микобактерии могут персистировать в макрофагах многие годы, несмотря на усиленный синтез лизоцима этими клетками, однако дальнейшее размножение и распространение первичной инфекции ограничивается именно фагоцитозом.
1.3.2 Генетические факторы предрасположенности и устойчивости к туберкулезу
Понимание важной роли генетических факторов в развитии туберкулеза пришло в первую очередь из эпидемиологических и близнецовых исследований. Так, в нескольких работах было показано, что степень устойчивости к инфекции М. tuberculosis у человека коррелирует с регионом его происхождения - предки более предрасположенных к заболеванию индивидов чаще всего происходили из областей, где туберкулез не распространен. Кроме того, частота клинического туберкулеза особенно высока во время эпидемий в популяциях, ранее не встречавшихся с данной инфекцией, в частности, у американских и канадских индейцев [17]. С середины 80-х годов было проведено множество исследований, пытающихся идентифицировать гены предрасположенности к туберкулезу или доказать уже опубликованные ассоциации. Многие из недавно проведенных исследований (Bellamy 2005, Bellamy 2006, Fernando 2006, Hill 2006, Ottenhoff 2005, Remus 2003) противоречат друг другу, и трудно прийти к единому заключению.
Исследования близнецов показали более высокий уровень конкордантности по клиническому туберкулезу у монозиготных пар по сравнению с дизиготными.
Дальнейшие исследования, проведенные на экспериментальных животных моделях, существенно дополнили имеющуюся информацию о генетических факторах предрасположенности к заболеванию. Исследования на мышах показали, что восприимчивость к инфекции такими родственными М. tuberculosis агентами как M. bovis (BCG), M. lepraemurium, M. intracellulare и М. avium, а также двумя немикобактериальными видами Salmonella typhimurium и Leishmania donovani, контролируется одним геном, локализованным в проксимальном регионе мышиной хромосомы 1. Ген получил три альтернативных названия Lsh, Ity и Bcg. У мышей предрасположенность к инфекции, контролируемая этим геном, является рецессивным признаком по сравнению с устойчивостью. Показано, что ген Lsh/lty/Bcg важен для активации макрофагов ретикулоэндотелиальной системы.
Ген Bcg был изолирован у мышей методом позиционного клонирования в 1993 г. и получил название Nramp (natural-resistance associated macrophage protein; сейчас называется Nramp 1 в связи с открытием гомолога Nramp 2). Анализ последовательности Nramp 1 у 27 инбредных линий мышей показал, что чувствительность к микобактериальной инфекции ассоциирована с миссенс мутацией, приводящей к замене глицина на аспарагиновую кислоту во втором трансмембранном домене белка.
В 1994 г. был клонирован гомолог гена Nramp 1 у человека, названный NRAMP1. Он локализован в локусе 2q35 и содержит 16 экзонов (Cellier 1994). Вклад данного гена в предрасположенность к туберкулезу у человека активно дискутируется. Опубликованы доказательства сцепления региона 2q35 с заболеванием у бразильцев и канадцев. Показано, что данный локус отвечает за скорость прогрессирования заболевания, а не за восприимчивость к инфекции. Кроме того, установлено, что NRAMP1 ассоциирован с проказой и результатами реакции Матсуда (аналог туберкулиновой пробы для проказы) у вьетнамцев. Это свидетельствует о том, что данный ген включен также в контроль инфекции близкородственной М. tuberculosis бактерии М. leprae.
Функция Nramp1 у мышей и NRAMP1 у человека пока неизвестна. Белок Nramp1 у мышей локализован в эндоцитозных компартментах и после фагоцитоза накапливается на мембранах фаголизосом. Эти данные свидетельствуют о том, что Nramp1 может ограничивать воспроизводство внутриклеточных патогенов, изменяя фаголизосомальное содержимое. Родственный ген - Nramp2 контролирует уровень ионов железа, а дрожжевой гомологичный ген SMF1 регулирует концентрацию ионов марганца. Таким образом, возможная функция белка Nrampl состоит в регуляции содержания ионов железа, марганца и других дивалентных катионов в фагосомах.
По данным многих исследований человеческий ген NRAMP1 не вносит существенного вклада в общую подверженность к туберкулезу. Однако его полиморфизм участвует в формировании отличий в подверженности к заболеванию туберкулезом у неинфицированных ранее лиц, а также оказывает влияние на течение уже возникшего заболевания.
Показано, что с туберкулезом связаны три точечные замены в гене белка, связывающего маннозу (MBL). Причем частота этих вариантов была достаточно высока как у европеоидов, так и у африканцев и австралийских аборигенов.
В последнее время получены доказательства связи туберкулеза с полиморфизмом гена рецептора к витамину D (VDR). Показаны ассоциации с туберкулезом полиморфизма генов, кодирующих интерлейкин-1β (IL1B) и его рецепторный антагонист (IL1RA). Ведутся исследования также и других генов, рассматриваемых как кандидаты на роль генов предрасположенности к туберкулезу, исходя из их функции (NOS2, TLR, NAT2, GST и др.).
Также многие исследования направлены на изучение ассоциаций иммуногенетической системы HLA с предрасположенностью к различным инфекциям. Доказано, что аллели HLA ассоциированы с восприимчивостью к таким инфекционным заболеванием, как сложная малярия, с прогрессированием ВИЧ, гепатитов B и C [24]. Исследования HLA также показали ассоциацию HLA-DR2 с лепрой или типами лепры - туберкулоидной или лепроматозной - в семейных и исследованиях типа "случай-контроль" в азиатских, африканских и американских популяциях (Geluk 2006). Многие исследователи искали ассоциации определенных аллелей HLA с восприимчивостью к туберкулезу.
Ранние исследования доказали ассоциации аллелей HLAI класса с восприимчивостью к туберкулезу, хотя было несколько проблем: найденные аллели варьировались в различных исследованиях; исследования, проведенные до начала 90-х годов, были выполнены с помощью лимфоцитотоксического метода, вероятность ошибки которого по сравнению с методом ПЦР составляет около 25% (Rajalingam 1996); не были проведены исправления для многократного исследования (Bland 1995).
Недавно был проведен мета-анализ (Kettaneh 2006), исследующий ранее определенные ассоциации HLA с восприимчивостью к туберкулезу преимущественно у взрослых людей серологическим методом. Мета-анализ показал, что не было никакой существенной ассоциации антигенов HLAI класса (А и C локусов) с предрасположенностью к туберкулезу, но был защитный эффект аллели HLAB13 (OR 0,64; 95% CI 0,50-0,81; P=0,0001). Для II класса локуса DR низкий риск развития туберкулеза был найден у людей, несущих DR3 (OR 0,72; 95% CI 0,59-0,89; P=0,002), DR7 (OR 0,65; 95% CI 0,53-0,80; P<0,0001); высокий риск развития туберкулеза был связан с DR8 (OR 1,72; 95% CI 1,21-2,46; P=0,003). Результаты для DR2 были противоречивыми (OR 1,67; 95% CI 1,16-2,41; P=0,006) (Kettaneh 2006). Мета-анализ очень полезен для исследования ранней литературы о HLA, он подвергает сомнению законность различных ассоциаций, так как не использовался более точный метод для идентификации аллелей HLA- полимеразная цепная реакция.
Ассоциации с аллелями HLA-B13, DR3, DR7 и DR8 в последнее время не получили большого распространения, а пограничная ассоциация с аллелем DR2 требует дальнейшего исследования. Об ассоциации с HLA-DR2 сообщалось в некоторых исследованиях на азиатских популяциях, главным образом от группы исследователей из Нью-Дели. В 1983 году два исследования из Нью-Дели сообщили об ассоциации между DR2 и прогрессированием туберкулеза (Singh 1983, Singh 1983). Исследование методом случай-контроль затем сравнило пациентов с мокротоположительным туберкулезом из Северной Индии с контролем, совпадающим по возрасту, полу и социоэкономическому статусу. Различия в распределении DR2 между пациентами и контролем были несущественными после коррекции в соответствии с числом тестированных антигенов, OR было равно 1,6 (Bothamley 1989). Во время семейного исследования распределения гаплотипов HLAI и II классов в 25 семьях при использовании метода Weitkamp была обнаружена значительно искаженная передача DR2 от родителей с туберкулезом к потомкам с туберкулезом (Weitkamp 1981). Поскольку семейные исследования имеют меньшую выборку, они обладают меньшей статистической достоверностью, чем исследования методом случай-контроль, и для получения надежных данных необходимо минимум 100-200 семей.
Исследования методом случай-контроль в индонезийской популяции показало ассоциацию туберкулеза с HLA-DR2 и DQw1 (Bothamley 1989), но было не ясно, являлись ли контрольные пациенты местными жителями или нет. А также исследование проводилось лимфоцитотоксическим методом, который подвержен ошибкам.
Российские исследования были направлены на изучение различных аллелей HLA у пациентов с туберкулезом в шести этнических группах (Хоменко 1990). В этих этнических группах были найдены разные ассоциации с туберкулезом, но в пяти из них была найдена четкая ассоциация HLA-DR2 с высоким риском развития туберкулеза и протективный эффект аллеля DR3.
Об ассоциации с DR2 также сообщалось и у тувинских детей (Поспелов 1996). Также сообщалось об увеличении частоты HLA-DR2 и DRw53 у детей с туберкулезом по сравнению со здоровыми детьми, но не по сравнению с детьми с другими хроническими болезнями легких. После коррекции Бонферрони существенной оставалась лишь ассоциация с DRw53.
При использовании более точного метода ПЦР для идентификации одиннадцати подтипов HLA-DR2 (Mehra 1995) была отмечена относительно высокая частота встречаемости DRB1*1501 у пациентов с туберкулезом по сравнению с контролем (р<0,05); в последующем сообщалось о том, что в той же группе была обнаружена относительно высокая частота встречаемости DR2 у пациентов с туберкулезом (Rajalingam 1996) по сравнению с контролем (Pc = 0,029, RR=1,8) и более сильная ассоциация при отсутствии лечения с
8-09-2015, 20:04