Розв'язування задач сфероїдної геодезії

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ ВОДНОГО ГОСПОДАРСТВА ТА

ПРИРОДОКОРИСТУВАННЯ

СЛОВ’ЯНСЬКИЙ НКЦ

Курсова робота

З дисципліни: ВИЩА ГЕОДЕЗІЯ

РОЗВ'ЯЗУВАННЯ ЗАДАЧ СФЕРОЇДНОЇ ГЕОДЕЗІЇ

Виконав: студент

групи ЗВК – 42

Нікітін О.О.

Слов’янськ 2010 р.


ЗМІСТ

трикутник лежандр аддитамент геодезичний

Вступ

Завдання 1. Обчислення довжини дуги меридіану

Завдання 2. Обчислення довжини дуги паралелі

Завдання 3. Обчислення довжини сторін та площі знімальної трапеції

Завдання 4. Наближене розв’язування трикутників за теоремою Лежандра

Завдання 5. Наближене розв’язування трикутників способом аддитаментів

Завдання 6. Розв’язування прямої геодезичної задачі способом допоміжної точки (спосіб Шрейбера)

Завдання 7. Розв’язування прямої геодезичної задачі за формулами Гауса із середніми аргументами

Завдання 8. Розв’язування оберненої геодезичної задачі за формулами Гауса із середніми аргументами

Завдання 9. Пряма задача проекції Гауса-Крюгера (перехід з поверхні еліпсоїду на площину)

Завдання 10. Розрахунок геодезичних координат пункту за плоскими прямокутними координатами


Вступ

Визначення параметрів земного еліпсоїда і форми земної поверхні становить велику наукову зацікавленість та має важливе значення для практичної і інженерної геодезії, для топографії і картографії, а також для багатьох суміжних наук: астрономії, геофізики, геодинаміки тощо.

Вивчення геометрії земного еліпсоїда та методів розв’язування задач на його поверхні складає вагому частину змісту курсів "Основи вищої геодезії" та "Вища геодезія". Ці питання, а також питання зображення поверхні еліпсоїда на площині відносяться до частини вищої геодезії, яка історично отримала назву "сфероїдна геодезія".

Вища геодезія вивчає фігуру та зовнішнє гравітаційне поле Землі, методи створення систем геодезичних координат на всю поверхню Землі або на окремі її ділянки, а також способи визначення положення точок земної поверхні в тій чи іншій системі координат.

Завдання вивчення фігури та гравітаційного поля Землі, як основної задачі вищої геодезії, розв’язується за результатами вимірів на земній поверхні. Це геодезичні виміри в мережах тріангуляції, трилатерації, полігонометрії та нівелювання 1 класу, а також супутниково-навігаційні спостереження з метою визначення координат точок земної поверхні. Методи постановки та виконання вказаних вимірів складають предмет першої частини вищої геодезії.

Друга частина вищої геодезії – теоретична основа розв’язування основної задачі. В ній розглядаються і встановлюються аналітичні залежності між результатами вимірів і фігурою Землі та її гравітаційним полем.

Вища геодезія, в тому числі її частини - сфероїдна геодезія та теоретична геодезія, є однією із основних дисциплін, що забезпечує необхідну теоретичну і практичну спеціальну підготовку фахівців геодезичного профілю.


Завдання 1. Обчислення довжини дуги меридіану

А1 – точка на меридіанному еліпсі з широтою В1 . А2 – точка на меридіанному еліпсі з широтою В2 .

Загальна формула для дуги меридіану довільної довжини:

(4)

A,B,C,D – сталі коефіцієнти прийнятого референт-еліпсоїду; ρ – число кутових одиниць в одному радіані; - середня широта дуги А1 А2 .

Формула для довжини дуги меридіану при обчисленнях в тріангуляції на віддалі порядку сотень кілометрів:

(6)

Радіус кривизни меридіану перерізу Mm обчислюється за середньою широтою Bm .

За умови точності широти точки mB = ±0.0001" всі зазначені формули забеспечують середню квадратичну помилку довжини дуги меридіану

mS = ±0.001 м.

Вихідні дані

Номер варіанту №8

В1

48º30′48.1111" - 8′

48º22′48.1111"

48,38003086

В2

49º30′49.1111" + 8′

49º38′49.1111"

49,64700617

Сталі величини

a

6378245 м

e2

0,00669342

ρº

57,29577951

A

1,00506238

B

0,00506238

C

0,00001062

D

0,00000002

Обчислення довжини дуги меридіану за формулою (4):

Позначення дій

Результати

49,01351852

6335552,727

0,02222460

- 0,00001563

- 0,00000022

0,00000000

s (м)

140902,722

Обчислення довжини дуги меридіану за формулою (6):

Позначення дій

Результати

0,99809115

6371972,436

140902,730

- 0,00000005

s (м)

140902,723

Завдання 2. Обчислення довжини дуги паралелі

А1 та А2 – точка на паралелі з широтою В. L1 та L2 довготи точок А1 та А2 .

Паралель на земному еліпсоїді утворює коло. Радіус r паралелі з широтою В виражається формулою:

N – радіус кривизни перерізу першого вертикалу. Переріз першого вертикалу – це крива на поверхні еліпсоїду, утворена перетином поверхні еліпсоїду нормальною площиною, яка перпендикулярна до площини меридіанного перерізу у даній точці.


- перша функція геодезичної широти;

a – велика піввісь та e – перший ексцентриситет референт-еліпсоїду.

Дуга паралелі між точками А1 та А2 є дугою кола з центральним кутом, який дорівнює різниці довгот кінцевих точок дуги λ = L2 – L1 . Довжина s дуги паралелі з широтою В, яка відповідає різниці довгот λ = L2 – L1 , виражається формулою . Остаточно:

(10)

За умови точності широти і довгот точок mB = mL ±0.0001" формула (5) забеспечує середню квадратичну помилку довжини дуги паралелі

mS = ±0.001 м.

Вихідні дані

Номер варіанту №8

B

48º30′48.1111" - 8′

48º22′48.1111"

48,38003086

L1

25º30′25.1111" - 8′

25º22′25.1111"

25,37364197

L2

27º30′27.2222" + 8′

27º38′27.2222"

27,64089506

Сталі величини

a

6378245

e2

0,00669342

ρº

57,29577951

Обчислення довжини дуги паралелі за формулою (10):

Позначення дій

Результати

2,26725309

0,99812791

6390208,045

s (м)

167951,005

Завдання 3. Обчислення довжини сторін та площі знімальної трапеції

Сторони знімальної трапеції чи листа карти заданого масштабу є лініями меридіанів та паралелей на поверхні земного еліпсоїду. Тому обчислення натуральних розмірів та площі знімальної трапеції – це визначення частини поверхні еліпсоїду в межах ліній меридіанів та паралелей, які окреслюють лист карти заданого масштабу.

Розміри знімальної трапеції на поверхні еліпсоїду описуються наступними параметрами:

- південна a1 та північна a2 сторони, які на поверхні еліпсоїду є дугами паралелей з широтами B1 і B2 , та окреслюються меридіанами з довготами L1 і L2 ;

- західна та східна сторони с , які на поверхні еліпсоїду є дугами меридіанів, окреслених паралелями з широтами B1 і B2 , тому завжди рівні між собою;

- діагональ d трапеції:


(11)

Формули розрахунку довжин дуг a1 та a2 на широтах відповідно B1 і B2 :

(12)

(13)

Для вираження площі трапеції P маємо робочу формулу вигляду:

, (15)

де b – мала піввісь і A’,B’,C’ – сталі коефіцієнти прийнятого референц-еліпсоїду. Формула забезпечує розрахунок площі трапеції із середньою квадратичною помилкою не більше mp = ±0,0005 км2 .

Задано геодезичні координати точки А(BA , LA ) на поверхні земного еліпсоїду. Визначити приналежність точки А знімальній трапеції масштабу 1:50000, номенклатуру та геодезичні координати рамки відповідного листа карти і розрахувати довжини сторін та площу цієї трапеції.

Вихідні дані

Номер варіанту №8

BA

48º01′01.1111" + 7′*8

48,95030864

LA

22º11′11.1111" + 30′*8

26,18641975

Сталі величини


Геодезичні координати сторін трапеції

B1

48º50′

48,83333333

B2

49º00′

49,0

L1

26º00′

26,0

L2

26º15′

26,25

Обчислення довжини сторін трапеції за формулами (11),(12),(13),(14).

Позначення дій

Результати

Позначення дій

Результати

0,99810160

0,99809194

6390376,482

6390438,348

18354,212

18293,253

(см карти)

36,71

(см карти)

36,59

48,91666667

0,998096769

6371864,921

с (м)

18535,004

d (м)

26063,473

с (см карти)

37,07

d (см карти)

52,13

Обчислення площі трапеції за формулою (15).

Позначення дій

Результати

Позначення дій

Результати

352641,2223

0,00095901

-0,00000410

-0,00000001

Р (км2 )

339,630

Р (га)

33963,07

Завдання 4. Наближене розв’язування трикутників за теоремою Лежандра

Після визначення кінцевих значень виміряних кутів або напрямів у тріангуляції на поверхні еліпсоїду розпочинають розв’язування трикутників, яке зводиться до послідовного обчислення довжин їх сторін за одним виміряним базисом і кутами трикутників. При довжинах сторін до 90 км розбіжностями між поверхнею еліпсоїду і сферою можна нехтувати, а трикутники вважати сферичними.

Теорема Лежандра: Малий сферичний трикутник АВС можна розв’язувати як плоский, якщо кожний з його кутів А, В, С зменшити на третину сферичного надлишку.

Розв’язати два малих сферичних трикутники, зображених на схемі, якщо:

- довжина вихідної сторони с1 = (60000 – 500*8) метрів;

- середня широта Bm = 48º01′01.1111" + 7′*8.

Виміряні сферичні кути трикутників приведено в таблиці.

Вихідні дані

Номер варіанту №8

Довжина вихідної сторони

с1 = (60000 – 500*8)

56000

Середня широта

48º57′01.1111"

48,95030864

Сталі величини

b

6356863,019

e2

0,00669342

ρº

57,29577951


Результати вимірів кутів

№ трикутника

Позначення кутів

Виміряні сферичні кути

1

A1

78º27′09.18"

B1

51º33′02.51"

C1

49º59′51.20"

2

A2

59º25′19.10"

B2

51º46′48.52"

C2

68º47′54.33"

Робочі формули:

Радіус сфери

6381154,368 м.

Трикутник №1:

; ;

; .

Трикутник №2:

; ;

; .

Відомість наближеного розв’язування трикутників

Верш.

Виміряні

сферичні кути

Виправлені

сферичні кути

Виправлені

плоскі кути

Синуси

кутів

Довжини

сторін

C

49º59′51.20"

1,689

49º59′52.888"

-2,652

49º59′50.237"

0,76601402

56000,000

B

51º33′02.51"

1,689

51º33′04.198"

-2,652

51º33′01.547"

0,78315577

57253,160

A

78º27′09.18"

1,689

78º27′10.868"

-2,652

78º27′08.217"

0,97975833

71625,930

Σ1

180º00′02.89"

5,066

180º00′07.956"

-7,956

180º00′00"

ε1

7,956

w1

-5,066

D

59º25′19.10"

3,035

59º25′22.134"

-3,685

59º25′18.450"

0,86093557

71625,930

B

51º46′48.52"

3,035

51º46′51.554"

-3,685

51º46′48.870"

0,78564059

65361,729

C

68º47′54.33"

3,035

68º47′57.364"

-3,685

68º47′53.680"

0,93231272

77564,185

Σ2

180º00′01.95"

9,105

180º00′11.052"

-11,055

180º00′00"

ε2

11,055

w2

-9,105

Завдання 5. Наближене розв’язування трикутників способом аддитаментів

Аддитаменти – це поправки до сторін сферичного трикутника, з врахуванням яких його можна розв’язати за сферичними кутами на основі теореми синусів плоскої тригонометрії. Отже,

для сторони b ,

для сторони с .

Числові значення аддитаментів невідомих сторін можна розрахувати за приблизними значеннями їх довжин та .

Розв’язати два малих сферичних трикутники, зображених на схемі, якщо:

- довжина вихідної сторони с1 = (60000 – 500*8) метрів;

- середня широта Bm = 48º01′01.1111" + 7′*8.

Виміряні сферичні кути трикутників приведено в таблиці.


Вихідні дані

Номер варіанту №8

Довжина вихідної сторони

с1 = (60000 – 500*8)

56000

Середня широта

48º57′01.1111"

48,95030864

Сталі величини




29-04-2015, 00:38
Страницы: 1 2 3 4
Разделы сайта