Разработка программы совершенствования организации международных перевозок

12.

Количество АТС

ед

Аэ

11,2 (принимаю 11)

5,1 (принимаю 5)

14.

Списочное количе­ство автомобилей

ед

Асп

15,7 (принимаю 16)

7,1 (принимаю 7)

15.

Списочное количе­ство полуприцепов

ед

Псп

12.9 (принимаю 13)

5.9 (принимаю 6)

16.

Автомобиле-дни автопредприятия

дн

АДап

496

217

17.

Автомобиле-дни в эксплуатации

дн

АДэ

286

130

18.

Общий пробег за период

км

Lобщ

228840

76720

19.

Автомобиле-часы в наряде за период

ч

АТн

36665,2

27819.4

20.

Количество ездок за период

Nе

44

20

21.

Производительность парка

т

Q

504.3

498.1

22

Производительность парка

ткм

P

740509

722448

Таблица 6.

Показатели работы АТС на линии

Показатели использования и производительности АТС

Ед. Изм.

Обозначение

RENAULT 385.19 Т 4 ´ 2.2 + SCHMITZ SCD20 ВО

Итого за год для МАЗ 64226 6 ´ 4.2 + FRUEHAUF

1

2

3

4

5

6

1.

Объем перевозок

Qмес

т

500

6000

2.

Время на маршруте

ч

Тм

80,3

963,6

3.

Время оборота

ч

to

128,3

128,3

4.

Время движения

ч

tд

78,9

78,9

Продолжение таблицы 6.

1

2

3

4

5

6

5.

К-т использования календарного времени

kо

0,62

0,62

6.

Время в наряде

ч

Тн

128,2

7.

Коэффициент использования пробега

b

0,49

0,49

8.

Производительность за ездку

т

Uе

17,9

9.

Производительность за ездку

ткм

Wе

34059,0

10.

Число оборотов для одного АТС за месяц

no

4,06 (принимаю 4)

11.

Среднесуточный пробег

км

lсс

718,7

12.

Количество АТС

ед

Аэ

5,6 (принимаю 6)

5

13.

Списочное количе­ство полуприцепов

ед

Псп

12.9 (принимаю 13)

6

14.

Списочное количество автомобилей

ед

Асп

8,6 (принимаю 9)

7

15.

Автомобиле-дни автопредприятия

дн

АДап

279

2555

16.

Автомобиле-дни в эксплуатации

дн

АДэ

156

1500

17.

Общий пробег за период

км

Lобщ

91536

920640

18.

Автомобиле-часы в наряде за период

ч

АТн

20000

192300

19.

Количество ездок за период

Nе

24

240

21.

Производительность парка

т

Q

503

5977

22.

Производительность парка

ткм

P

738600

8669374

Наиболее эффективно использовать автомобильный транспорт, при одновременном обеспечении сохранности грузов и экономии горюче-смазочных материалов. Частично это возможно осуществить при выборе подвижного состава соответствующей грузоподъемности и грузовместимости для заданных к перевозке видов грузов и их объемов.

Таким образом, важной задачей организации перевозок является выбор АТС, наиболее полно отвечающих условиям и обеспечивающих наибольшую эффективность их использования. Она решается путем сравнения различных марок автомобилей между собой при перевозке заданного вида груза. Решающим фактором является производительность подвижного состава и стоимостные показатели (транспортные издержки, себестоимость, прибыль) и энергоемкость перевозок (удельный расход топлива). Производительность автопоезда во всем реальном диапазоне lег выше, чем у одиночного автомобиля (на доказательстве этого утверждения не останавливаюсь), поэтому к перевозке задаю исключительно автомобильные поезда. Их состав оптимизируется по максимальной производительности в зависимости от общей массы.

Выбор производительности в качестве целевой функции основывается на следующем: с увеличением полной массы автопоезда возрастает его грузоподъемность (повышается производительность), но снижается техническая скорость (снижается производительность), следовательно, этот параметр зависит от полной массы, внешней скоростной характеристики двигателя, параметров трансмиссии, ходовой части, а также дорожных условий [4]. В данном дипломном проекте ставлю задачу в упрощенном варианте, принимая условие, что необходимые модели и количество АТС имеются в АТП в достаточном количестве.

Определение часовой производительности АТС [16]:

(24)

,

где Uрч – часовая производительность АТС, т;

q – допустимая полная масса полуприцепа (см. п.п. 2.3.), т;

gс – статический коэффициент использования грузоподъёмности (см. п.п. 2.5.2.);

bе – коэффициент использования пробега за ездку – 0.5;

Vт – техническая скорость – 48.3 км/ч;

lег – длина ездки с грузом – равна длине маршрута lм , км;

tп-р – время простоя под погрузкой-разгрузкой (см. п.п. 2.5.1.), ч.

Результаты расчета (24) сводим в диаграмму, которая изображена на рис. 6.

Uрч , т

Рис. 6. Диаграмма производительности АТС на линии.

Вывод : Наилучшие показатели, как видно из табл. 4 и 5, следует отнести к автопоезду МАЗ 64226 6´4.2 + FRUEHAUF. При использовании данного АТС в перевозках наблюдается уменьшение общего пробега за период по сравнению с автопоездами на базе тягачей RENAULT и КамАЗ на 17 %, и 55 % соответственно. Возросла производительность за ездку в тоннах и тонно- километрах по сравнению с автопоездами на базе тягачей RENAULT, КамАЗ на 6 % и 54% соответственно. В результате чего уменьшилось число автомобилей, работающих на маршруте, их списочное количество 7 ед. против 9 и 16 автопоездов на базе тягачей RENAULT и КамАЗ соответственно. Еще один важный показатель - общий расход топлива за период - у автопоезда МАЗ–64226 6´4.2 + FRUEHAUF ниже на 6 % и 47 % чем у автопоездов на базе тягачей RENAULT и КамАЗ соответственно.

2.5. Технология выполнения погрузо- разгрузочных работ

2.5.1. Краткая характеристика погрузо-разгрузочных средств

Пропускная способность каждого погрузо-разгрузочного поста зависит от степени оснащения его погрузо-разгрузочными средствами, уровня механизации. Известно, что простейшие ПРС снижают трудоемкость работ по сравнению с затратой физического ручного труда на 15-40 % [3]. Применяемые средства для механизации ПРР:

Ручные вилочные тележки — изготовитель — финская фирма «ROCLA», применяются для погрузки, разгрузки и горизонтального перемещения пакетов с грузом. Имеют подъемную платформу с ручным гидравлическим приводом, грузоподъемностью до 1.5 т, высота подъема площадки – 0.2 м. Перемещаются усилием рабочего, обладают высокой маневренностью, что дает возможность использовать их в помещениях, вагонах и кузовах автомобиля.

Усилие, необходимое для перемещения тележки с пакетом груза:

(25)

Fc ³ Wc =fк ´(Q+G) cosb+(Q+G) sinb ,

где Wc - сила статического сопротивления передвижению тележки;

fк - коэффициент сопротивления качению, 0.05;

Q - вес груза, складывается из веса паллета (25 кг - 250 н) и веса самого пакета 8250 н;

G - вес тележки - 600 н;

b - продольный уклон - 0°.

(26)

Wc =0.05 ´(8250+250+600) ´cos0 °+(8250+250+600) ´sin0 °=455 н ® 46 кг.

Электропогрузчики и штабелеры применяют с механической (отечественного производства, ЭП-106) и гидравлической трансмиссией (мод. ЕВ- 705, производитель - «BALKANCAR», Болгария). Оборудованы вилочным захватом для подъема пакетированного груза. Грузоподъемность у таких средств колеблется в пределе от 1 до 5 т при высоте подъема рабочего органа до 8 м. Скорость передвижения по ровной площадке - 10 км/ч. Электропогрузчики отличаются от автопогрузчиков меньшими размерами, что повышает маневренность и позволяет использовать их не только в помещениях, но и для работы в кузовах автомобилей. Для повышения устойчивости за задней осью монтируется противовес. Электродвигатели погрузчиков работают от кислотных аккумуляторных батарей [3]. Каждый ПРМ имеет свой паспорт и свидетельство о регистрации.

Основные параметры применяемых электропогрузчиков приведены в табллице 7.

Таблица 7.

Краткая характеристика электропогрузчиков

Параметры

ЭП - 106

ЕВ - 705

Грузоподъемность на вилах, т

1,0

2

Наибольшая высота подъема груза на вилах, м

4,5

4,5

Наибольшая скорость подъема груза, м/мин

9

8,4

Наибольшая скорость передвижения, км/ч: с грузом (без груза)

9 (10)

10 (12)

Наименьший радиус поворота по наименьшему маршруту, м

1,6

2,2

Масса погрузчика, оборудованного вилами, т

2,38

3,8

Электропогрузчики относятся к ПРМ циклического действия, производительность такого ПРС можно оценить при помощи следующей зависимости [3]:

(27)

,

где Wэ – производительность, т/ч;

qк – грузоподъемность механизма - 1.0 т;

kv – коэффициент наполнения - 0.91;

Тц – время цикла, с;

hн – коэффициент, оценивающий интенсивность работы. Во время ПРР он равен 1.0;

kс – коэффициент совмещения операций - 0.8.

(28)

Тц = Tпод +Топ +Тманевр +2 ´Тдвиж .

Для расчетов принимаю средние значения, полученные путем непосредственных замеров:

Tпод – время, затраченное ПРМ на подъем груза - 5 с;

Топ – тоже, на опускание груза - 1 с;

Тманевр – время маневра ПРМ - 6 с;

Тдвиж – время, затраченное на передвижение с грузом к автомобилю, с учетом задержек и остановок в пути - 25 с.

Тц =5 +1 +6 +2 ´25=62 с,

тогда:

(29)

т/ч.

Принимая условие, что пост ПРР включает 2 электропогрузчика типа ЭП-106, определяем время погрузо-разгрузочных работ. Результаты занесены в табл. 8. Время tп-р охватывает подготовительные операции и оформление документов – 10 мин на первую тонну погрузки, а суммарное Stп-р за рейс – комплекс этих операций в пунктах разгрузки.

Таблица 8.

Время выполнения погрузо-разгрузочных работ

Наименование полуприцепа

q н , т

W э , т/ч

W пост , т/ч

t п-р , ч

S t п-р , ч

ОдАЗ-97725

11.3

44

88

0.13

0.77

SCHMITZ-SCD20-BO

22.5

44

88

0.43

1.37

FRUEHAUF

24.6

44

88

0.45

1.39

Вывод: При анализе таблицы можно наблюдать линейную зависимость между грузоподъемностью АТС и временем его загрузки-выгрузки. Наименьшее время погрузо-разгрузочных работ у полуприцепов марки ОдАЗ-97725.

2.5.2. Технология выполнения погрузо-разгрузочных работ

Организация движения автомобилей на маршруте в значительной степени зависит от организации работы погрузо-разгрузочных пунктов, чья пропускная способность должна быть достаточной для бесперебойного обслуживания работающих на маршруте автомобилей.

Рассматриваемый грузовой терминал, находящийся по адресу: Промзона «Парнас», 6-й проезд, «Петромолк - 5» (см. подробнее в Графическом разделе) относится к погрузо-разгрузочным пунктам постоянного характера. Режим работы такого пункта - круглосуточный. Для выполнения операций по приемке, переработке (подбору, сортировке), отправлению и оформлению грузов имеет несколько площадок, каждая из которых образует погрузо-разгрузочный пост. Данный пункт арендуют 3 торговых организации, каждая из которых может занимать только 1 пост вне зависимости от объема погрузо-разгрузочных работ.

Площадки имеют твердое покрытие и хорошее освещение для работы в ночное время. В пределах каждой площадки для автомобилей характерна торцевая расстановка (рис. 7а), она широко применяется, т.к. сокращает фронт работ. Однако погрузка (разгрузка) при такой расстановке малопроизводительна и неудобна, поскольку осуществляются только через заднюю дверь кузова.

В связи с тем, что в настоящем проекте перевозки осуществляются автопоездами, то для повышения производительности работы ПРП целесообразно применять ступенчатый способ расстановки автомобилей (рис. 7б). Он позволит осуществлять операции по погрузке (разгрузке) автоприцепов через борт и заднюю часть кузова, что существенно облегчит и ускорит работу (разумеется, если позволяет конструкция полуприцепа). Скорость передвижения автомобилей по ПРП - не более 10 км/ч.

Типовая технология проведения погрузо-разгрузочных работ, рассматриваемая в данном проекте, включает в себя следующие этапы:

- пропуск транспортного средства на территорию грузового терминала;

- подача транспортного средства к месту погрузки (разгрузки);

- проведение подготовительных мероприятий;

- загрузка (выгрузка) автопоезда, включая прием (сдачу) груза экспедитором;

-


29-04-2015, 04:12


Страницы: 1 2 3 4 5 6 7 8 9 10 11 12
Разделы сайта