Расчет параметров предохранительной рубашки и глубины задирки плотика произведен по буровым линиям №18 и №18а.
Необходимые данные для расчета:
Содержание золота в золотоносном пласте С=2,5 гр/м3 ;
Бортовое содержание полезного компонента Сб =0,25 гр/м3 ;
Содержание золота во вмещающих породах Св =0,05 гр/м3 ;
В табл. 2.5 и 2.6 приведены содержание по скважинам.
Таблица 2.5 – Содержание ценного компонента в скважине №18
Условная высотная отметка, м. | Номера скважин | Средняя по под пласту, гр/м3 . |
|||||||
39 |
40 |
41 |
42 |
43а |
44а |
45 |
46 |
||
3,6 | - | - | - | 3,029 | 1,154 | - | - | - | 0,571 |
3,2 | - | - | - | 2,930 | 6,564 | - | - | - | 1,187 |
2,8 | - | 0,988 | - | 2,245 | 0,303 | 0,391 | 0,202 | - | 0,516 |
2,4 | - | 29,085 | - | 2,422 | 1,014 | 2,019 | - | 1,24 | 4,597 |
2,0 | 1,514 | 9,083 | 15,580 | 6,730 | 2,421 | 1,562 | - | 9,161 | 5,756 |
1,6 | 5,452 | ЗН | ЗН | 9,720 | - | ЗН | - | 2,955 | 2,260 |
1,2 | 9,583 | 10,380 | 15,397 | 0,379 | - | 1,262 | - | 3,515 | 5,065 |
0,8 | 12,620 | 3,670 | - | - | - | 0,391 | - | - | 2,085 |
0,4 | ЗН | - | - | - | - | - | - | - | 0 |
0 | 2,753 | - | - | - | - | - | - | - | 0,344 |
Средняя по разведочной линии | 2,238 |
Таблица 2.6 – Содержание ценного компонента в скважине №18 а
Условная высотная отметка, м. | Номера скважин | Средняя по под пласту, гр/м3 . |
|||||
9 |
10 |
11 |
12 |
13 |
14 |
||
3,2 | - | - | 0,330 | - | 0,750 | - | 0,138 |
2,8 | - | - | ЗН | 0,250 | 2,280 | 0,833 | 0,227 |
2,4 | - | - | 20,000 | 0,400 | ЗН | ЗН | 3,400 |
2,0 | - | 0,166 | 3,400 | 0,200 | 0,200 | ЗН | 0,594 |
1,6 | - | ЗН | 5,600 | - | 1,100 | 0,417 | 1,186 |
1,2 | 5,083 | ЗН | - | - | 1,800 | - | 0,847 |
0,8 | - | 0,250 | - | - | - | - | 0,042 |
0,4 | 3,2 | - | - | - | - | - | 0,530 |
0 | 1,6 | - | - | - | - | - | 0,267 |
Средняя по разведочной линии | 0,774 |
1 Устанавливаем последовательность разностей отметок разведочных линий в кровле пласта
∆1к=Нк39-Нк40=615,4-615,8=0,4 м; ∆2к=Нк40-Нк41=615,8-616=0,2 м;
∆3к=Нк41-Нк42=616-616,6=0,6 м; ∆4к=Нк42-Нк43а=616,6-616,4=0,2 м;
∆5к=Нк43а-Нк44а=616,4-616,2=0,2 м; ∆6к=Нк44а-Нк45=616,2-616=0,2 м;
∆7к=Нк45-Нк46=616-616,2=0,2 м; ∆8к=Нк46-Нк39=616,8-615,4=1,4 м.
где Нк39 – Нк46 – высотная отметка по кровле соответствующей
скважины.
2 Устанавливаем последовательность разностей отметок разведочных линий в почве пласта
∆1п=Нп39-Нп40=613,4-61,4=0,6 м; ∆2п=Нп40-Нп41=614-614,4=0,4 м;
∆3п=Нп41-Нп42=614,4-614,4=0 м; ∆4п=Нп42-Нп43а=614,4-616,8=2,4 м;
∆5п=Нп43а-Нп44а=616,8-614=2,8 м; ∆6п=Нп44а-Нп45=614-615,2=1,2 м;
∆7п=Нп45-Нп46=615,2-614,8=0,4 м; ∆8п=Нп46-Нп39=614,8-613,4=1,4 м .
где Нп39 – Нк46 – высотная отметка по почве соответствующей скважины.
3 Определяем стандартную случайную изменчивость в кровле пласта
; (2.16)
где п – количество разностей, п=8
4 Определяем стандартную случайную изменчивость в почве пласта
; (2.17)
5 Определяем стандартную случайную изменчивость относительно поверхности после вскрыши.
Стандартную случайную изменчивость относительно поверхности после вскрыши зависит от вида выемочного оборудования, так при использовании экскаватора ЭШ 20/90 δсл В =0,35 , при использовании ЭКГ 5А δсл В =0,3 , а при использовании бульдозера δсл В =0,2.
6 Определяем стандартную случайную изменчивость относительно поверхности после добычи
Стандартную случайную изменчивость относительно поверхности после добычи также зависит от вида выемочного оборудования, так при использовании экскаватора ЭШ 20/90 δсл Д =0,35 , при использовании ЭКГ 5А δсл Д =0,3 , а при использовании бульдозера δсл Д =0,25.
Далее ведем расчет со стандартной изменчивостью равной δсл В =0,35 и δсл Д =0,35 , то есть, производим вычисление для шагающего экскаватора.
7 Определяем стандартную случайную изменчивость контура выемки пласта кровли:
; (2.18)
где i – интервал опробования i=0,4 м.
8 Определяем стандартную случайную изменчивость контура выемки пласта почвы:
; (2.19)
9 Определяем ширину зоны контакта кровли пласта:
; (2.20)
10 Определяем ширину зоны контакта кровли пласта:
; (2.21)
11 Определяем показатель рациональной выемки пород пласта:
; (2.22)
12 Определяем среднее содержание:
(2.24)
где j – количество содержаний, j = 9.
14 Определяем рациональную мощность предохранительной рубашки:
м; (2.25)
15 Определяем рациональную глубину задирки плотика:
м; (2.26)
16 Определяем слой потерь полезного ископаемого в почве пласта:
м; (2.27)
17 Определяем слой потерь полезного ископаемого в кровле пласта:
м; (2.28)
Повторяем расчет формул 5- 17 для экскаватора типа ЭКГ 5А, и бульдозера.
Весь расчет повторяем для буровой линии №18а. Полученные результаты заносим в таблицу 2.7.
Таблица 2.7 – Параметры предохранительной рубашки и задирки плотика
Номер буровой линии | Параметры | ||||||||
δк сл | δп сл | δ∑к сл | δ∑п сл | mпр , м. | mз , м. | hк , м. |
hп , м. | ||
№18 |
ЭШ | 0,41 |
1,05 |
0,57 | 1,1 | 0,57 | 1,1 | 0,0079 | 0,0015 |
ЭКГ | 0,54 | 1,1 | 0,53 | 1,1 | 0,0074 | 0,0015 | |||
Бульдозер | 0,49 | 1,09 | 0,48 | 1,09 | 0,0067 | 0,0015 | |||
№18а |
ЭШ | 0,52 |
0,52 |
0,66 | 0,66 | 0,66 | 0,66 | 0,0009 | 0,0009 |
ЭКГ | 0,63 | 0,63 | 0,63 | 0,63 | 0,0008 | 0,0008 | |||
Бульдозер | 0,59 | 0,59 | 0,59 | 0,59 | 0,0008 | 0,0008 | |||
Средняя |
ЭШ | 0,46 |
0,78 |
0,61 | 0,88 | 0,61 | 0,88 | 0,0044 | 0,0012 |
ЭКГ | 0,58 | 0,86 | 0,58 | 0,86 | 0,0041 | 0,0011 | |||
Бульдозер | 0,54 | 0,84 | 0,53 | 0,84 | 0,0037 | 0,0011 |
18 Определяем объем потерь полезного ископаемого в кровли пласта:
м3 ; (2.29)
где В – средняя ширина россыпи, В=122 м (см. табл. 2.2);
L – длина россыпи, L=2806 м (см. табл. 2.2).
19 Определяем объем потерь полезного ископаемого в почве пласта:
м3 ; (2.30)
20 Определяем коэффициент потерь в кровле пласта:
; (2.31)
где Vпи – объем полезного ископаемого в россыпи, Vпи = 1036800 м3 .
20 Определяем коэффициент потерь в почве пласта:
; (2.32)
Из формулы (2.24) видно, что среднее содержание полезного компонента в золотосодержащем пласте (с учетом предохранительной рубашки и задирки плотика) составило 2,2 гр/м3 . Таким образом содержание золота по месторождению р. Вача определяться как:
(2.34)
3 Горная часть
3.1 Исходные данные для проектирования
3.1.1 Современное состояние горных работ
Промывочный сезон 2002 года открылся 24 мая и закончился 3 ноября. Среднесуточная добыча золота составила 1437 грамм.
Материально-техническое обеспечение (основные средства) артели представлены в основном горными машинами и оборудованием, необходимым для добычи золота. Артель использует в своем производстве так же машины и оборудование, взятые в аренду у ООО "Аурум".
Производственная база, оснащена всем необходимым для проживания
персонала, хранения ГСМ и производства ремонтных работ горного оборудования.
Помимо вышеперечисленного на базе (на 01.10.01) года имеется дополнительное малостоящее оборудование, материалы, запасные части и ГСМ на сумму 2010 тыс. руб.
3.1.2 Выбор способа разработки
В зависимости от типа горных машин, используемых для выемки и транспортировки песков, различают следующие способы разработки: подземный, дражный, экскаваторный, гидравлический, скреперно-бульдозерный.
Из всех способов разработки наиболее трудоемким, дорогостоящим является подземный. Подземный способ разработки целесообразно применять в следующих условиях, где четко выдержанный и выраженный пласт, глубина залегания более 20м, высокое содержание золота 10-12г/м3 .
Дражный способ неэффективен из-за 100%-ной пораженности массива многолетней мерзлотой и незначительного срока эксплуатации месторождения, слишком малы запасы полезного ископаемого.
Гидравлический способ выгоднее применять для разработки россыпей с ограниченным притоком подземных и поверхностных вод. С увеличением притока разработка усложняется, а себестоимость добычи повышается. Наиболее водоносные россыпи разрабатывать гидравлическим способом не целесообразно. Лучше применять его для разработки террасовых, увальных, верховых и ключевых россыпей. Для разработки пойменных россыпей небольшой или средней водоносности гидравлический способ целесообразно использовать на отдельных небольших площадях с малыми запасами или когда на приисках имеется дешевая электроэнергия и нет оборудования для применения более выгодного способа. Себестоимость добычи при разработке пойменных россыпей увеличивается вследствие увеличения стоимости осушения, но сохраняют основные преимущества этого способа: небольшие капитальные вложения и простота оборудования. Запасы россыпей, которые можно разрабатывать гидравлическим способом, изменяются в широких пределах. Эти сроки зависят от капиталовложений, необходимых для разработки россыпи и наличие разведанных запасов вблизи прииска. Если необходимо строить линию электропередачи значительной протяженности и поселок; то следует выдерживать сроки существования разреза не менее 10-12 лет.
При глубине россыпи до 30 м. и шириной 150 м. наиболее целесообразно разрабатывать россыпь экскаваторно-транспортным способом с раздельной выемкой торфов и песков.
При экскаваторно-транспортном способе разрабатывают террасовые и верховые россыпи с любым уклоном плотика, сложенные из наиболее крепких и валунистых пород.
Бульдозерно-скреперный способ разработки не требует больших капитальных затрат и характеризуются малым удельным расходом электроэнергии. К достоинствам бульдозеров и скреперов следует отнести их высокую маневренность, возможность быстрой перебазировки с одного участка на другой. К недостаткам следует отнести: заметное снижение производительности при повышенных влажностях и валунистости разрабатываемых пород и увеличенном расстоянии их транспортирования; необходимость доставки на участок значительного количества ГСМ и высокую трудоемкость ремонтных работ.
Бульдозеры применяться при заработки талых и мерзлых пород до V категории и после предварительного механического или буровзрывного рыхления. При мощности россыпи до 10 м и более, растоинии транспортирования породы до 150 м, и угле подъема до 180 .
Из выше перечисленных способов наиболее подходящим для разработки россыпного месторождение «Вача» является бульдозерный.
Бульдозерный способ разработки удовлетворяет всем параметрам и характеристикам месторождения. Так крепость пород по СНИПу на месторождении составила IV. А при использования бульдозеров и механического рыхления породы данным способом возможна разработка пород до V категории, средняя мощность пласта (с учетом предохранительной рубашки и задирки) не превышает 3 м. Расстояние транспортирование песков бульдозерами также не будет превышать максимальной рациональной для бульдозеров т. к. используется вывоз песков их разреза автосамосвалами.
3.1.3 Режим работы и
производственная мощность предприятия
Режим организации работ карьера раздельной добычи “Вача”:
сезонный с вахтовыми условиями труда, непрерывной рабочей неделей в две смены продолжительностью по 12 часов из которых: обед-1час, плановые предупредительные работы-1 час, два перерыва для отдыха по 15 минут.
Продолжительность сезона для различных видов работ, принимается из графика годового распределения среднемесячных температур наружного воздуха по району (смотри рисунок 1.1):
· продолжительность буровзрывных работ 290 суток;
· продолжительность вскрышных работ 260 суток с 20 марта по 26 ноября;
· продолжительность промывочных работ 150 суток с 3 мая, по 11 октября.
Производительность карьера определяется исходя из запасов песков, способа разработки и производительности промприбора.
Средне годовая производительность карьера по вскрыше торфов составит:
м3 (3.1)
где АП/П – среднегодовая производительность промприбора, А n =114000 м3 (смотри таблицу 3.1);
n – количество промывочных приборов, n=2 шт.;
Кв – коэффициент вскрыши, Кв=8,2
(3.2)
Годовая производственная мощность карьера
А= Ат +( АП/П ּ n ) = 1722000+(105000 ּ 2)= 1932000 м3 (3.3)
Срок отработки россыпи составит:
N = V п / (Ап/п ּ 2)= 1036800 / (105000ּ2) = 5 (3.4)
Производственная мощность предприятия обеспечивается следующим оборудованием: промывочными приборами ПГШ – II – 50 (2 шт.), экскаватором КАТО-1500GV, бульдозерами D 355 A (2 шт.) и Т-170 (2 шт.), буровым станком 2СБШ-250 МН, автосамосвалами БелАЗ –540А (3 шт.), экскаватором ЭШ 15 / 90А.
3.2 Осушение россыпи
Цель осушения месторождения заключается в следующем: отвод избытка воды с поверхности осушаемой территории; понижение уровня грунтовых вод и уменьшения влажности залежи; обеспечение прочной опоры для используемой техники при разработке.
Сооружения для отвода поверхностных и подземных вод подразделяют на две группы:
1 Поверхностные (канавы, котлованы);
2 Подземные (штреки, горизонтальные скважины).
В зависимости от назначения канавы делятся на руслоотводные, нагорные, водосборные и капитальные (водосточные).
Способы осушения заключается в проведении следующих мероприятий:
· отвод русла рек из карьерного поля;
· ограждение карьера от поверхностных весенних и ливневых вод.
Отвод русла реки за промышленный контур россыпи в проекте не предусматривается, так как р. Вача находится за пределами россыпи.
Для атмосферных осадков, которые попадают в карьер и для вод талых пород сооружаем дренажную канаву.
Капитальная траншея обеспечивает доступ к вскрышным и добычным уступам.
Продольный уклон россыпи составил 0,0003, а поперечный уклон россыпи 0,045.
Продольный и поперечный уклон россыпи значительно большие, следовательно, вода будет собираться в углу нижней части россыпи, а дальше будет проходить по капитальной траншее. В траншее будет проходить дорога с уклоном 30 0 /00 , при количестве атмосферных и талых вод 0,005 м3 /с вода будет проходить по обочине и не будет препятствовать движению.
Длина капитальной траншеи принята 334 м .
Водосборная канава служит для сбора атмосферных осадков и для вод талых пород, которые попадают в карьер, а затем переходит в водосточную канаву.
Длина водосборной канавы будет равна длине капитальной траншеи,
L к = 334 м.
В траншее будет проходить дорога с уклоном 30 0 /00 , при количестве атмосферных и талых вод 0,005 м3 /с вода будет проходить по обочине и не будет препятствовать движению.
Для отвода поверхностных вод, стекающих в карьер с более возвышенных мест в период весеннего снеготаяния и после ливневых дождей, проводят нагорные канавы.
Скорость течения воды в канаве определяется из того что скорость течения воды в канаве (v ) не должна превышать размывающею скорость (v РАЗМ ) и не должно быть меньше скорости течение при которой происходит заиливание канавы (v ЗАИЛ ).
Высота потока в канаве определяется:
(3.5)
где Q10 – 10% обеспеченность стока, максимальная, Q10 =1,75 м3 /с ;
β – ширена отвала бульдозера, β=3,2 м ;
vРАЗМ – скорость размыва, vРАЗМ =2,04 .
(3.6)
где α – коэффициент крупности наносов, α=0,5.
Площадь сечения канавы определяется:
(3.7)
где b – ширена канавы по дну, b=3,2 м ;
m – заложение откосов, m =1 (450 );
h – высота канавы, определяется путем подбора.
Смоченный период определяется:
(3.8)
Гидравлический радиус канавы определяется как:
(3.22)
Коэффициент Шизи определяется:
(3.9)
где п – коэффициент шероховатости канавы, п=0,018 ;
у – эмпирический коэффициент, у=0,167 .
Уклон канавы определяется:
(3.10)
Расход воды определяется как:
(3.11)
Расчет проведен для высоты потока в канаве равной 0,5 м. Аналогичный расчет проводим для высот 0,4; 0,3 и 0,2 м. Результаты заносим в таблицу 3.1.
Таблица 3.1 – Расчет параметров нагорной канавы
№ | b, м. | h, м | w, м2 | х, м | R, м | С | i | Q, м3 /с |
1 | 3,2 | 0,5 | 1,8 | 4,4 | 0,4 | 47,7 | 0,002 | 2,4 |
2 | 3,2 | 0,4 | 1,68 | 4,1 | 0,35 | 46,6 | 0,002 | 1,77 |
3 | 3,2 | 0,3 | 1,44 | 3,8 | 0,3 | 45,4 | 0,002 | 1,16 |
4 | 3,2 | 0,2 | 1,05 | 3,6 | 0,2 | 42,5 | 0,002 | 0,56 |
Далее строим график зависимость расхода воды в канаве от высоты потока воды в канаве, см. рис 3.1.
Рисунок 3.1 - График зависимость расхода воды в канаве от высоты потока
воды в канаве.
Из графика видно, что при данном расходе воды 1,75 м3 /с высота потока воды в канаве буде равна 0,39 м.
К полученной высоте потока прибавляем необходимую безопасную высоту.
. (3.12)
где ε – необходимый надводный борт, по ТБ, ε = 0,45 м .
Таким образом, глубина нагорной канавы будет равна 1 м.
Определяем объем нагорной канавы:
; (3.13)
где ВПОВ , ВПОН – ширина канавы поверху и понизу соответственно, ВПОВ =5,2 и ВПОН =3,2 ;
L – длина нагорной канавы (принята с проекта), L=1950 м .
Рисунок 3.2 – Сечение нагорной канавы.
Затраты на проведение нагорной канавы определяются как:
(3.14)
где ЦБ170 – стоимость затрат на 1 м3 для бульдозера Т 170, ЦБ170 = 9,3 руб. (см. табл. 3.15) .
Осушение карьера в случае ливневых вод предусмотрено водоотливной установкой состоящей из двух грунтовых насосов ГРТ 400/40.
Выбор насосной установки:
(3.15)
где zСУТ – максимальная суточная норма осадков, z СУТ = 0,06 м;
S ВС – площадь водосбора, S ВС = 262500 м2 .
Таким образом выбор насосной установки необходимо проводить исходя из максимального водопритока в час, из этого условия выбирается грунтовый насос ГРТ 400/40 в количестве 2 шт., суммарной производительностью 800 м3 /ч.
Насосы располагаются параллельно, такая комбинация позволяет увеличить производительность насосов до 800 м3 /ч (суммарно), а напор оставить прежним 40 м.
Схематично соединение насосов показано на рисунке 3.3.
Рисунок 3.3 – Схема соединения насосов ГРТ 400/40
3.3 Вскрытие месторождения
Работы по вскрытию включает совокупность работ, проводимых с целью создания доступа к горизонту залежи, т.е. обеспечения непосредственной транспортной связи этого горизонта с поверхностью и размещения горных машин.
Вскрытие состоит из проведения горных выработок или строительства специальных сооружений (выносных канав, котлованов, выездов, траншей, плотин).
При экскаваторной разработке вскрытие россыпи осуществляется двумя способами: без проведения выработок и с независимым вскрытия отдельных горизонтов.
При вскрытии без проведения выработок оборудования располагается на поверхности россыпи и используется как для вскрышных, так и для добычных работ.
При независимом вскрытии горизонтов используют две технологические схемы: транспортная и бестранспортная. При бестранспортной разработке выработки проводятся, только если экскаватор производит вскрытие без применения транспортных средств. На экскаваторных разработках с применением транспорта работы по вскрытию включает проведения траншей, устройство выездов, сооружения насыпей и съездов, планировку площадок для экскаваторов и транспортных средств. При этом способе россыпь разрабатывается одним или несколькими уступами (в зависимости от мощности россыпи).
Проектом принят независимое вскрытие отдельных горизонтов с применением транспортной технологии.
3.3.1 Схема вскрытия
Схема вскрытия карьерного поля включает в себя капитальную траншею и четыре разрезных траншеи. Четыре разрезные траншеи необходимы для вскрытия исходи из условия экскавации торфов. Вскрытие месторождения производиться экскаваторам ЭШ 15/90 А. Экскаватор проходит разрезную траншею №1, после того как из неё будет убран и вывезен золотоносный пласт песков, она засыпается торфами разрезной траншеи №2, так как предусмотрено расположение отвалов вскрыши в отработанное пространство. И так далее, разрезная траншея №2 засыпается торфами из №3, а та в свою очередь из №4. При этом достигается низкий коэффициент переэкскавации kПЕР =0,2,так же уменьшаться работы по рекультивации нарушенных земель
Сменная норма выработки экскаватора ЭШ 15/90 А определяется из выражения:
(3.16)
где ТКФМ – календарный фонд времени по месяцам, из расчета 12 часов в смену, ТКФМ = 480 ч ;
ТВ – вспомогательные работы, из расчета 20 мин. в смену, ТВ = 14 ч ;
29-04-2015, 01:09