Станом на 16-ий тиждень спостереження було отримано наступні дані щодо величини середнього ПФ у групах „контроль” та „гідрогель”. Стосовно ЗІК: 7,23 проти 4,69 (в загальному по групах „гідрогель” і „контроль” відповідно) (рис. 1), 2,88 проти 0,59 (підгрупи груп „гідрогель” та „контроль” із гіршими показниками відновлення) та 10,26 проти 8,23 балів ВВВ (підгрупи груп „гідрогель” і „контроль” із кращими показниками відновлення). Стосовно ЗКК: 13,03 проти 10,6 (в загальному по групах „гідрогель” і „контроль” відповідно) (рис. 2), 12,41 проти 10,45 (підгрупи груп „гідрогель” та „контроль” із гіршими показниками відновлення) та 13,17 проти 10,73 балів ВВВ (підгрупи груп „гідрогель” і „контроль” із кращими показниками відновлення). Отже, згідно із цими даними, імплантація гідрогелю призводить до достовірного покращення функції задніх кінцівок, що станом на 16-ий тиждень у різних досліджуваних вибірках виражається величинами у межах 2–2,54 бала ВВВ.
Інваріантність величини позитивного впливу імплантації гідрогелю на відновлення функції задніх кінцівок знаходить адекватне пояснення. Відомо, що зростання складності функціональної активності кінцівки супроводжується залученням все більшого об’єму волокон та інтернейронного апарату спинного мозку (H. Majczynski, U. Slawinska, 2007). Регенераційні перебудови при ушкодженні певної частини спинного мозку здійснюються в межах апарату, який повністю чи частково причетний до генерування функціональної активності цієї частини інтактного спинного мозку. Отже, чим глибше ураження вказаної частини спинного мозку, тим менший об’єм її функціонального апарату залишається неушкодженим, тим нижчий рівень її функціональної активності, однак, тим менші можливості регенераційного відновлення. І, навпаки, при більшому об’ємі збереження спостерігається більш високий рівень функціональної активності ушкодженої функціональної частини спинного мозку, що потребує більш широких пластичних перебудов для досягнення позитивного результату, однак це стає можливим лише у тій мірі, в якій широта регенераційних змін визначається об’ємом первинної збереженості нервових структур.
Порівняльний аналіз динаміки середньої величини ПФ задніх кінцівок у різних підгрупах дозволив виділити у посттравматичному періоді кілька фаз (рис. 3), що пов’язані, на нашу думку, із етапною реалізацією різних механізмів відновного процесу.
Перша фаза відновлення функції спинного мозку триває протягом 1-го тижня після нанесення травми і пов’язана, на нашу думку, із відновленням функції провідності волокон, що зазнали найменш значного ураження. Друга фаза (2-3-ій тиждень – у групі „гідрогель” та 3-4 тиж у групі „контроль”) характеризується, на нашу думку, відновленням волокон, котрі зазнали більш значного, демієлінізуючого впливу. Суттєві відмінності у поведінці показника швидкості відновлення функції задніх кінцівок груп „гідрогель” та „контроль”, дозволяють стверджувати, що імплантація гідрогелю призводить до зростання частки волокон, котрі зазнали слабкого ураження за рахунок зменшення частки волокон, що отримали більш значне ураження.
Третя фаза інтенсифікації відновного процесу припадає на 4-ий тиждень в обох групах і, очевидно, відображає результативність не лише відновлення волокон, що зазнали демієлінізуючого впливу (більш характерно для групи „контроль”), але й у деякій мірі – пластичних перебудов систем низхідного проведення збудження.
Четверта фаза у випадку групи „контроль” припадає на 7–9-ий тиждень спостереження, тоді як у групі „гідрогель” її ініціація прослідковується уже на 5-му тижні і тривалість обмежується кінцем 8-го тижня спостереження. У цій фазі виявляється втрата спряженості між об’ємом збереженості субстрату регенераційного процесу та функціональною результативністю перебудов, що вказує на високе значення реалізації таких механізмів прояву пластичності нейрональних сіток, як формування довгих розгалужень нейритів під час спраутингу, регенераційне проростання аксональних відростків у каудальні відділи спинного мозку тощо. Виходячи із даних порівняльного аналізу динаміки ПФ на цьому інтервалі відновного процесу, слід визнати, що гідрогель позитивно впливає на перебіг вказаних трансформацій, прискорюючи їх ініціацію. Ці висновки знаходить підтвердження і у даних морфологічних досліджень, котрі свідчать, що ніжна сполучна тканина в товщі гелевого імплантату, а також у складі оточуючої капсули, починаючи з 3-го тижня після імплантації, стає зоною проростання волокон дрібного та середнього калібру.
Вторинні альтераційні реакції, що розгортаються у контрлатеральній частині спинного мозку, призводять до різкого зниження ПФ ЗКК в обох підгрупах групи „контроль” протягом перших 2-ох тиж. Таке зниження не виявляється у жодній із підгруп тварин, котрим проводили ЛПП у поєданні з імплантацією гідрогелю.
Отже, імплантація гідрогелю в ранньому періоді травматичного процесу чинить протекторний вплив на елементи провідникового апарату та нейрональні клітини сірої речовини спинного мозку, а також сприяє регенераційному росту нервових волокон шляхом забезпечення процесу організації із переважним залученням сполучнотканинних компонентів.
При аналізі даних електрофізіологічного дослідження тварин групи „контроль” виявляється настання піку середньої величини МА М-відповіді у досліджуваному м’язі ЗІК наприкінці 7-го тижня спостереження (рис. 4). Середня величина МА М-відповіді у групі „гідрогель” на 7-му тижні виявляється достовірно нижчою, аніж у групі „контроль”. Максимальне значення цього показника у групі „гідрогель” реєструється лише на 26 тижні спостереження (рис. 4).
Станом на 23-ій тиждень спостереження у групі „контроль” виявляється достовірне зниження середньої величини М-відповіді досліджуваного м’язу ЗІК. Менш виражена регресія цього показника у групі „гідрогель” спостерігається на 31 тижні (рис. 4).
Динаміка середніх значень ШПЗ та латентного періоду реєстрації збудження, що визначалася стосовно ЗІК, в обох експериментальних групах проявляє спряженість із динамікою середньої величини МА М-відповіді досліджуваного м’язу ЗІК. При цьому у випадку імплантації гідрогелю виявляються 2 максимуми ШПЗ: на 7-му (недостовірний) та 26-му (достовірний) тижні спостереження.
На підставі отриманих даних можна стверджувати, що імплантація гідрогелю призводить до розчленування динаміки електрофізіологічних показників, описаної для групи „контроль”, із формуванням трьох фаз: первинного росту (1–7 тиж), стабілізації (7–23 тиж), декомпенсації і кінцевої регресії (24–31 тиж).
Отримані дані узгоджуються із результатами морфологічного дослідження і дозволяють провести їх узагальнену інтерпретацію шляхом побудови патофізіологічної моделі процесів, що виникають після ЛПП спинного мозку та у випадку імплантації гідрогелю.
Слід відмітити, що внаслідок значного перекриття полів інервації гілок периферійних нервів, полісегментарності інервації окремих м’язів, автономізації функціональної активності відділів спинного мозку, розташованих нижче місця його травматичного пошкодження, а також внаслідок відновлення провідності збудження альтернативними шляхами з використанням інтернейронного апарату (при неповному ураженні поперечника спинного мозку) існування стану абсолютного виключення нервових впливів на окремо взятий до розгляду м’яз при моделюванні спінальної травми можна вважати вкрай сумнівним. Гіпертрофія рухових одиниць (РО), інервація яких залишилась збереженою, супроводжується значним зростанням амплітуди та тривалості М-відповіді (Б.М. Гехт та співавт., 1997). Тривала надмірна функціональна активність цих РО, а також пов’язаного із ними мотонейронного та інтернейронного апарату спинного мозку, стає головним чинником їхнього виснаження та наступної дегенерації, що спричиняє зниження реєстрованої МА М-відповіді.
Одним із головних чинників регенераційного процесу впродовж перших 7-ми тиж є формування найкоротших ланцюгів альтернативної передачі збудження через довговідросткові пропріоспінальні інтернейрони (F.M. Bareyre та співавт., 2004). Отже, необхідне аутогенне підвищення ШПЗ може досягатися лише шляхом підвищення збудливості інтернейронного апарату спинного мозку, що сприяє виникненню синдрому посттравматичної спастичності.
Вірогідно, що у випадку імплантації гідрогелю описані процеси набувають менш інтенсивного виразу, що виливається у помірне зростання величин МА М-відповіді та ШПЗ, обрахованих для ЗІК, протягом перших 7-ми тижнів спостереження.
Враховуючи первинний протекторний вплив гідрогелю на провідниковий та нейрональний апарат спинного мозку, а також зважаючи на отримані дані щодо проростання дрібних аксональних розгалужень у товщу сполучнотканинних компонентів гелевого імплантату починаючи з 3-го тижня, можна стверджувати, що у випадку імплантації гідрогелю широта функціонуючого мотонейронного апарату нижче місця травми переважає аналогічний показник у тварин групи „контроль”. Це обумовлює більш широке покриття інерваційними впливами кожного із м’язів ЗІК і певним чином обмежує об’єм залучення інтернейронного апарату у формування альтернативних шляхів проведення збудження. Однак, тимчасове налагодження прямої провідності по гомолатеральним волокнам через зону імплантації гідрогелю супроводжується зниженням швидкості передачі збудження (у першу чергу через дрібний діаметр новоутворених волокон у зоні імплантату) і демотивацією процесу становлення альтернативних шляхів проведення. Водночас, формування актів рухової активності ЗІК можливе, на нашу думку, лише за умови надходження усієї необхідної низхідної інформації, частина якої, очевидно, передається саме через вказані регенеруючі волокна. Їх присутність, таким чином, підвищує час, необхідний для формування електричного збудження у мотонейронах передніх рогів спинного мозку нижче місця травми, тобто знижує показники ШПЗ у групі „гідрогель” в порівнянні із групою „контроль” станом на 7-ий тиждень спостереження.
Слід очікувати, що подальша організація тканини імплантату, галузіння та подрібнення нервових волокон у товщі гідрогелю на фоні тривалого прагнення рухової системи до збільшення ефективності передачі збудження та функціонування мотонейронального апарату нижче місця травми призводить до поступового зростання активності пропріоспінальних інтернейронів з метою забезпечення проведення збудження в обхід зони трансплантату, залучення регенеруючих волокон у товщі імплантату до вогнищ підвищеної електричної активності. При цьому, як показали дані електронно-мікроскопічного дослідження, на більш віддалених термінах спостереження навколо новоутворених мієлінізованих нервових волокон формуються щільні колагенові футляри, що, вірогідно, є причиною порушення їхньої трофіки та прискорення дегенерації. В сумі своїй ці процеси, на нашу думку, є головною причиною виключення провідності по сектору волокон, що брали участь у формуванні проростань через товщу гідрогелю, а відтак – зниження функції інервованих за їхньою участю мотонейронів нижче місця травми. Цій стадії відповідає очікуване зниження ШПЗ, що виявляється на 23-му тижні спостереження.
Наступаюча за цим вторинна компенсаторна гіпертрофія РО, котрі залишилися у активно функціонуючому стані, супроводжується достовірним зростанням величини МА М-відповіді, що виявляється на 26-му тижні експерименту. На цей момент, очевидно, припадає закінчення формування додаткової частини альтернативних шляхів проведення та підвищення його швидкості механізмами, описаними вище для апарату інервації ЗІК групи „контроль”, що виливається у достовірний пік ШПЗ на 26-му тижні у групі „гідрогель”. Подальше зниження показників МА М-відповіді та ШПЗ на прикінцевих термінах спостереження, на нашу думку, можна пов’язувати із віковими змінами.
При виборі терміну проведення ТКНЦ послуговувалися отриманими даними щодо динаміки відновних процесів у групах „контроль” та „гідрогель”. При цьому з метою виявлення ефекту ТКНЦ у вигляді ізольованої у часі активації відновлення функції задніх кінцівок, не пов’язаної з жодною з аутогенних реакцій регенераційного типу, були обрані рівноцінні стосовно відсутності динаміки і максимально наближені до моменту моделювання травми терміни: 8 та 13 тиж після імплантації гідрогелю та після моделювання ізольованого ЛПП відповідно.
Водночас, виходячи із даних численних досліджень (А. Ramon-Cueto та співавт., 1998; N. Keyvan-Fouladi та співавт., 2003; M.I. Chuah та співавт., 2004), ми припускали, що специфічний ефект ТКНЦ нижче місця травми проявляється у найбільшій мірі на стадії активного регенераційного росту аксональних волокон, що пов’язано із специфікою функції НОГ. Ця фаза регенераційного процесу в ізольованому у часі вигляді виявляється на 7–8-му тижні у групі „контроль”, тоді як у групі „гідрогель” дебютує раніше – на 5-му тижні спостереження. Отже проведення ТКНЦ у терміни 4 та 7 тиж тваринам груп „гідрогель” та „контроль” відповідно ставить представників порівнюваних вибірок в однакові початкові умови та дає змогу відслідкувати специфіку дії клітин НЦ за наявності гелевого імплантату або без нього.
Було встановлено, що проведення ТКНЦ через 4 тиж після імплантації гідрогелю супроводжується достовірним підвищенням швидкості відновлення функції ЗІК (рис. 5), що виявляється на 10-му тижні загального спостереження і спричиняє статистично недостовірне покращення загальних результатів відновного процесу на 0,68 бала за шкалою ВВВ. При цьому, починаючи з 4-го тижня після ТКНЦ відмічалося тривале достовірне підвищення швидкості відновлення функції ЗІК у вибірці тварин із нижчими показниками функції ЗІК. У вибірці тварин із вищими показниками функції ЗІК ефект ТКНЦ виявлявся у вигляді достовірного піку швидкості зростання ПФ ЗІК на 8-му тижні загального спостереження.
Стосовно ЗКК при проведенні ТКНЦ через 4 тиж після імплантації гідрогелю жодного позитивного функціонального ефекту виявлено не було. Аналогічний результат стосовно функції ЗІК та ЗКК спостерігався і у випадку ТКНЦ, здійсненої через 8 тиж після імплантації гідрогелю.
Проведення ТКНЦ через 7 тиж після моделювання ізольованого ЛПП супроводжується виникненням достовірного піку швидкості відновлення функції ЗІК на 5-му тижні після трансплантації, що спричиняє виникнення стабільного у часі статистично недостовірного покращення результатів відновного лікування на 0,88 бала за шкалою ВВВ. Проведення ТКНЦ через 13 тиж після моделювання ЛПП не супроводжується відчутним позитивним функціональним ефектом.
На основі даних електрофізіологічного дослідження можна стверджувати, що ТКНЦ не впливає на часові особливості динаміки величини МА М-відповіді досліджуваного м’язу ЗІК, однак знижує ступінь прояву реакцій, притаманних різним фазам відновного процесу, причому це зниження носить достовірний характер у випадку ТКНЦ після моделювання ізольованого ЛПП (рис. 3). Стосовно контрлатеральної частини нервово-м’язового апарату (ЗКК) такого роду ефект ТКНЦ в обох варіантах застосування (у випадку ізольованого ЛПП та після імплантації гідрогелю в зону ЛПП) був виражений у меншій мірі.
Позитивний ефект ТКНЦ можна описати за допомогою щонайменше трьох механізмів: дестабілізація стійких патологічних топологій нейрональних сіток нижче місця травми; зниження загальної електричної активності у нейрональних ансамблях нижче місця травми і створення умов для реалізації складних форм функціональної активності моторної системи даних відділів спинного мозку; ремієлінізація та відновний ріст аксональних волокон.
Для окреслення кола складових першого із перерахованих механізмів важливо враховувати, що незрілі нейрогенні клітини, потрапляючи у великій кількості в тканину спинного мозку, формують значне поле рецепції та утилізації молекул факторів росту та адгезії. Враховуючи те, що тривале існування патологічних варіантів нейрональних сіток – патофізіологічного субстрату синдрому посттравматичної спастичності – можливе за умови постійної активної продукції факторів росту та адгезії, механізм „дефакторизації” у даному випадку відіграє, на нашу думку, ключову роль у дестабілізації існуючої патологічної структури нейрональних сіток, що призводить до зниження електричної активності мотонейронів спинного мозку.
Іншим можливим механізмом позитивного ефекту ТКНЦ є вплив нащадків прогеніторів НЦ на баланс медіаторних систем в зоні підвищеної електричної активності спинного мозку. Відомо, що прогенітори НЦ invitro та при трансплантації у тканину головного мозку диференціюються в холін-, ГАМК- та дофамінергічні нейрони (S. Pagano та співавт., 2000; E.A. Parati та співавт., 2003). Згідно з отриманими у даному дослідженні даними, у випадку проведення ТКНЦ в стромі імплантату виявляються острівці недиференційованих клітин, а також клітинні комплекси, серед яких визначаються фенотипові ознаки нейробластів. Це може опосередковано свідчити про нейрональне диференціювання прогеніторів НЦ в ділянках їхнього введення та міграційного розповсюдження.
Порівнюючи тривалість елевації величини ПФ ЗІК та ЗКК, пов’язаної із проведенням ТКНЦ, можна дійти висновку, що при такому частковому відновленні функції ЗІК у більшій мірі проявляється вплив ТКНЦ на стан провідникового апарату, тоді як при відновленні функції ЗКК виявлений позитивний ефект опосередковується переважно за рахунок впливу трансплантованих клітин на локальні нейрональні сітки спинного мозку. Швидке ж відновлення регресу ПФ, пов’язаного із проведенням ТКНЦ, вказує на можливий ремієлінізуючий ефект клітин НЦ.
Виходячи із усього вищенаведеного, можна зробити висновок, що гідрогель у описаному в даному дослідженні варіанті застосування проявляє тривалий, в цілому позитивний, однак внутрішньо неоднозначний ефект на відновні процеси у спинному мозку. ТКНЦ як самостійний метод відновного лікування, використаний у більш пізньому періоді розвитку травматичного процесу, проявляє слабкий позитивний функціональний ефект, котрий супроводжується вираженим зниженням надмірної електричної активності у еферентних частинах рухової системи. Сумісне застосування цих двох методів відновного лікування в рамках протоколу, використаного у даному дослідженні, не супроводжується прямою сумацією позитивних ефектів кожного із них, однак підвищує загальну результативність відновного лікування експериментальної травми спинного мозку.
ВИСНОВКИ
В дисертації представлене теоретичне узагальнення і нове вирішення наукової проблеми відновного лікування наслідків травматичного пошкодження спинного мозку в експерименті, що полягає у використанні імплантації синтетичного макропористого гідрогелю – у ранньому періоді та алогенної трансплантації клітин нюхової цибулини – у віддаленому періоді травматичного процесу.
1. Використана у даному дослідженні вдосконалена модель травматичного пошкодження спинного мозку (ЛПП) є адекватною для дослідження ефективності імплантації синтетичного макропористого гідрогелю і має певні переваги у порівнянні з моделями повного перетину та забиття спинного мозку на аналогічному рівні.
2. Імплантація гідрогелю в зону ЛПП призводить до достовірної переваги величини відновлення функції обох задніх кінцівок у порівнянні з контрольною групою (моделювання ізольованого ЛПП), котра станом на 16-ий тиждень у різних досліджуваних вибірках виражається величинами у межах 2–2,54 бала ВВВ.
3. Імплантація гідрогелю в зону травми одразу ж після моделювання ЛПП чинить протекторний вплив на провідники та нейрональні клітини оточуючої тканини спинного мозку.
4. Організація зони імплантації гідрогелю відбувається за
8-09-2015, 23:24