Автоматизация печи обжига известняка

откуда лотковым питателем грузится в бадью подъёмника.

Скиповым подъёмником известняк загружается в загрузочную чашу и далее – в шахту печи обжига.

Известняк с твёрдыми продуктами его разложения движется в шахте сверху вниз, а воздух, продукты горения и газообразные продукты диссоциации карбонатов – снизу вверх (принцип противотока).

По характеру тепловых взаимодействий шахта печи делится на 3 зоны, как при прохождении через них известняка, так и газов.

  • в первой по ходу известняка зоне – зоне подогрева происходит сушка и подогрев известняка за счёт тепла отходящих газов до 900оС, а газы охлаждаются до 250оС.

  • вторая зона - где сжигается природный газ, происходит процесс теплового разложения карбонатов кальция и магния (CaCO3 и MgCO3) с поглощением тепла и при температуре 1300оС. Зона обжига в печи является зоной основных химических реакций. Здесь происходит разложение карбоната кальция и получение извести:


СаСО3 t СаО + СО2 - разложение карбида кальция

MgCO3 t MgO + CO2 - разложение карбида магния


SiO2 + CaO = CaOSi + O2 - образование силикатов кальция


Al2O3 + CaO = CaO*Al2O3 - образование алюминатов кальция


Fe2O3 + CaO = CaO*Fe2O3 - образование ферратов кальция


SO2 + CaO = CaSO3 - образование сульфита кальция


CH4 + 2H2 = CO2 + 2H2O - полное сгорание метана


По мере выгрузки извести в зону обжига поступает подогретый до 800-900оС известняк, проходя через зону обжига, он нагревается до 1250-1300оС.

Обожжённый материал из зоны обжига попадает в зону охлаждения. Зона охлаждения служит теплообменником, в котором воздух забирает физическое тепло материала и нагревается до 800-900оС, а известь охлаждается до 150оС.

Охлаждённая известь при помощи автоматически включаемых кареток выгружается из печи на вибропитатель, а затем равномерно подаётся на ленточный транспортёр, а с него – на щековую дробилку.


1.2. Показатели технологического процесса


Контролируемый параметр

Ед. измер.

Норма

  1. Состав известкового камня

MgCO3

CaCO3


%

%


Не более 6

Не менее 86

2. Содержание SiO2 и глинистых примесей в известковом камне

Al2O3 + SiO2 + Fe2O3


%


Не более 8

3. Размер кусков известкового камня мм 80 – 150
4. Уровень известняка в печи от уровня крышки загрузки печи

мм


Не менее 500

5. Температура в зоне подогрева

оС

Не менее 600
6. Температура в зоне обжига

оС

1150 1300
7. Температура в зоне охлаждения

оС

Не более 150
8. Давление природного газа в коллекторе

мм вод.ст.

(КПА)

Не более 500

5

9. Давление природного газа на горелках

мм вод.ст.


Верхний ярус

10 – 150

Нижний ярус

40 – 180

10. Расход газа на горелки Нм/ч Не более 700
11. Разрежение на выходе из печи мм вод.ст Не менее 200
12. Количество отходящих газов Нм/ч 15000-20000
13. Разрежение в печи мм вод.ст Не менее 100
14. Температура отходящих газов

оС

Не более 250
15. Состав отходящих газов

СО % Не более 1,0
СН % Отсутствует
16. Содержание пыли в отходящих газах

г/Нм


Не более 3

17. Содержание СаО акт. и MgО акт. в готовом продукте

%


Не менее 65

18. Производительность печи т/ч 4,8 – 5,2

19. Установка КПМ

Начальная запылённость


г/м


До 10

20. Расход воды технической

м3

6*12
21. Давление поступающей воды

кгс/см2

МПа

2,96

0,296

22. Температура суспензии (после утилизации тепла)

оС


50 – 90

23. Эффективность очистки % 99,2

1.3.Контроль и регулирование процесса


  1. Контроль температуры в зонах подогрева и обжига осуществляется прибором ФЩЛ-501, установленном на щите. Импульсы на прибор поступают от термопар, вмонтированных в корпус в зоне подогрева (4шт) и зоне обжига (6шт), кроме того, температура в зоне обжига периодически 2 раза в смену замеряется переносной термопарой.

  2. Температура в зоне обжига контролируется по показаниям милливольтметра М-64, снабжённого переключателем точек ПТИ-М-У3. Импульс на прибор поступает от двух термопар, установленных в зоне охлаждения.

  3. Контроль температуры отходящих газов печи осуществляется по показаниям регулирующего прибора КСП-3, установленного на щите КИП и регулирует изменением расхода природного газа, а также, путём изменения режима загрузки известняка и выгрузки извести.

  4. Разрежение в печи контролируется дистанционно по показаниям вторичного прибора Тм НП-52, снабжённого переключателем точек. Датчик контроля разрежения установлен в верхней части шахты речи.

Регулирование разрежения осуществляется дистанционно посредством механизма типа МЭО – 2510, связанного с шибером (направляющим аппаратом) дымососа. Ключ дистанционного управления разрежением установлен на щите КИП.

  1. Качество извести контролируется аналитически определением содержания СаО акт. и MgO акт. в среднесуточных пробах, отбираемых с ленты конвейера при выгрузке извести из печи. Содержание СаО регулируется температурой обжига и режимом выгрузки извести из печи.

  2. Содержание окиси углерода и метана в отходящих газах контролируется аналитически определением проб газа, отбираемых и анализируемых лаборантом СПЛ. Отсутствие СО и метана в отходящих газах гарантируется полным сгоранием газа в печи и оптимальным его расходом. Их наличие является следствием повышения расхода природного газа, а также ненормального хода печи (подвисание извести в зоне горелок).

  3. Содержание пыли в отходящих газах контролируется аналитически определением проб, отбираемых лаборантом СПЛ и поддерживается минимальным путём обеспечения нормальных условий эксплуатации циклонов в системе очистки газов.

  4. Давление природного газа после ГРУ контролируется по показаниям технического манометра, установленного на трубопроводе и поддерживается в заданных пределах путём регулирования его расхода и бесперебойной работы горелок. Контроль давления газа в коллекторе производится U-образным манометром.

  5. Расход природного газа контролируется установленным на щите КИП расходомером типа КСД-3 на основании перепада давлений до и после диафрагмы, установленной на газопроводе. Регулирование расхода газа производится вручную поворотом вентиля или автоматически регулирующим клапаном в зависимости от температуры в зоне обжига, а также температуры отходящих газов. При отклонении давления от предельных значений, а также при остановке дымососа осуществляется отсечка природного газа клапаном ПКН-80, органы управления которым и сигнализация его положения находятся на щите КИП.

  6. Содержание кислорода в природном газе при продувке газопровода определяется анализом проб, отбираемых на продувочной смеси, лаборантом СПЛ. При содержании кислорода более 1% газопровод подвергается дополнительной продувке на свечу.

  7. Содержание метана в атмосфере печного помещения определяется анализом проб, отбираемых и анализируемых лаборантом СПЛ, и поддерживается минимальным путём герметизации газопровода и запорной арматуры, а также соблюдением нормальных условий эксплуатации печи и проветривании помещения.

  8. Расход воды контролируется расходомером в ОПМ.


Обоснование и выбор средств автоматизации.


Для управления технологическим процессом малой информационной ёмкости нежелательно применять контроллеры типа “Ломиконт” и ”Ремиконт”.

Поэтому для автоматизации применяются дискретные приборы.

Чем выше класс точности регулирующих приборов и средств сигнализации, тем выше качество и быстродействие регулирования.


Применяемые приборы:

Датчики:

Термопреобразователь температуры ТХА и ТХК,

Дифманометр ДМ3583,

Датчик-реле напора ДН,

Фотодатчик контроля погасания пламени СЛ-90.

Вторичные приборы:

Прибор контроля и регистрации ФЩЛ-501 кл.т.0,5

Потенциометр КСП3-1010, кл.т.0,5

Милливольтметр М-64 кл.т.1,0

Тягонапоромер ТНМП-52 кл.т. 1,0

Расходомер КСД3-1000, кл.т.1,0

Регулирование:

Регулятор РП2-П2, кл.т.0,5

Применён, так как высокое быстродействие и точность необязательны, а цена такого регулятора ниже цены на более современные регулирующие устройства.

2. Выбор регулируемых параметров


  • TIRC-4

Регулирование температуры в печи обжига через измерение температуры отходящих газов регулированием расхода природного газа.

Регулирование необходимо для получения извести высокого качества. При отклонениях температуры от нормы в нижнюю сторону получается большое количество недопала, следовательно увеличивается и количество отходов, что сказывается на экономичности. При превышении температурой нормы происходит пережег извести, вследствие чего увеличивается процент побочных реакций, и ухудшается качество извести.

Температура отходящих газов не должна превышать 250о С

Используемые приборы:

Термопара ТХК (3-1)

Потенциометр КСП3-1010 (3-2)

Задатчик дистанционный ДЗФМ-4 (3-4)

Регулятор РП2-П3 (3-5)

Магнитный пускатель МКР-0-58 (3-6)

Регулирующий клапан (3-8)

Указатель положения вала двигателя ДУП-М (3-7)


3. Выбор контролируемых параметров


  • TIRC-2

Контроль температуры в зоне подготовки шихты.

Значительные отклонения температуры в зоне подготовки говорят о неправильном ходе печи или о нарушении технологии, что влияет на качество в сторону ухудшения. Используется дублирование термопар, так как возможен их выход из строя вследствие высоких температур или механических повреждений кусками падающего известняка.

Номинальная величина 500 – 700о С

Используемые приборы:

Термопары ТХА (1-1 и 1-2)

Вторичный прибор ФЩЛ – 501 (1-9)


  • TIRC-2

Контроль температуры в зоне обжига.

Контроль необходим для наблюдения за протеканием процесса. Температуру в зоне обжига необходимо поддерживать в определённых пределах, но регулировать её автоматически невозможно из-за частого выхода из строя термопар. Поэтому её контролируют и, в случае большого отклонения, корректируют вручную. Используется дублирование термопар, так как возможен их выход из строя вследствие высоких температур или механических повреждений кусками падающего известняка. Вместо термопар типа ТХА было бы лучше использовать термопары типа ТПП, но это неэкономично в связи с малой механической прочностью чехлов последних.

Номинальная величина 1150 – 1300о С

Используемые приборы:

Термопары ТХА (1-3 – 1-8)

Вторичный прибор ФЩЛ – 501 (1-9)


  • TIR-3

Контроль температуры в зоне охлаждения.

Наблюдение за процессом необходимо для обеспечения нормального протекания охлаждения. В случае большого отклонения температуры в зоне охлаждения от нормы (при неполадках автоматического регулирования или неправильном ходе печи) необходимо ручное воздействие. Используется дублирование термопар, так как возможен их выход из строя.

Номинальная величина: не более 150о С.

Используемые приборы:

Термопары ТХК (2-1, 2-2)

Переключатель выбора точек ПТИ-М-У3(2-3)

Милливольтметр М-64(2-4)


  • PIR-5

Разрежение в печи и в дымоходе

При понижении разрежения ухудшается тяга, и возможно погасание пламени или вступление продуктов сгорания природного газа в побочные реакции. При повышении разрежения возможно увеличение расхода природного газа и неполное его сгорание.

Номинальные величины:

-точки 13 и 14 от 80 до 160 мм.вод.ст.

-точка 15 – 160 мм.вод.ст.

Используемые приборы:

Тягомер мембранный показывающий ТММП-52 Шкала 0-250кгс/м2 (4-2)

Кран-переключатель КП-3 (4-1)


  • FIR-9

Расход природного газа на печь

Природный газ является топливом, и его необходимо учитывать в экономике.

Номинальная величина 500м3

Используемые приборы:

Диафрагма камерная ДК6-50г на Dу=50 мм (7-1)

Дифманометр мембранный дифтрансформаторный ДМ –3573 (7-2)

Вторичный прибор КСД3-1000 на расход 800 м3/ч (7-3)


4. Выбор параметров сигнализации


  • PTA-8


Сигнализация нижнего и верхнего пределов давления природного газа в трубопроводе. Предельные значения этих параметров говорят о погасании пламени или нарушении хода печи. Требуют немедленного вмешательства обслуживающего персонала.

Сигнализация нижнего предела:

Предел срабатывания 20 мм.вод.ст.

Используемые приборы:

Датчик реле напора ДН предел установки 4-40 мм.вод.ст. (6-1)

Сигнализация верхнего предела:

Предел срабатывания 500 мм.вод ст.

Используемые приборы:

Датчик реле напора ДН предел установки 60-600 мм.вод.ст. (6-2)

Звонок громкого боя, сигнальная лампа с красным светофильтром,

Кнопка отсечки природного газа (6-3), электромагнит МИС-4200 , Клапан отсечной ПКН-80 (6-4)


  • BSA-5


Сигнализация погасания пламени.

Погасание пламени может привести к взрыву.

При срабатывании датчика автоматически производится отсечка газа на подающем газопроводе.

Сигнализируемый параметр: погасание пламени горелки.

Используемые приборы:

Датчик контроля погасания пламени СЛ-90 (5-1), электрический блок розжига (5-2), электромагнит МИС-4200, клапан отсечной ПКН-80 (6-4)


5. Выбор параметров блокировки


  • PTA-8


Сигнализация и блокировка нижнего и верхнего пределов давления природного газа в трубопроводе.


Смотри выбор параметров сигнализации.


  • BSA-5


Блокировка подачи природного газа при погасании пламени горелки


Смотри выбор параметров сигнализации.


6. Наладка и монтаж средств автоматизации.


Потенциометры


При проверке соединение образцового прибора с поверяемым осуществ­ляется медными или термоэлектродными проводами с учётом внешнего сопротивления. После прогрева потенциометра необходимо оценить ре­акцию прибора на изменение входного сигнала. Убедившись в том, что прибор правильно реагирует на изменение входного сигнала, присту­пают к проверке основной погрешности.

При использовании образцовых потенциометров необходимо знать входное (выходное) сопротивление. Применение того или иного типа определяется допустимым сопротивлением линии связи поверяемого потенциометра. Для потенциометров типа КС это сопротивление не должно превышать 200 Ом, значит, выходное сопротивление образцо­вого потенциометра не должно превышать этого значения. При исполь­зовании высокоомного образцового потенциометра в качестве источника следует использовать ИРН. В этом случае образцовым потенциометром измеряют задаваемое напряжение.

Необходимо учитывать поправку на изменение температуры свободных концов.

Некоторые типы потенциометров имеют встроенную манганиновую ка­тушку, которую подключают тумблером или перемычкой вместо ком­пенсационной медной. При отсутствии встроенной, её следует изгото­вить со следующими номинальными значениями для потенциометров типа КС: (9,02+/-0,005 Ом)-ХК, (0,78+/-0,001 Ом)-ПП, (5,42+/-0,005 Ом)-ХА.

На рисунке 1а показана схема поверки потенциометра при наличии ман­ганиновой катушки, поверяемый и образцовый потенциометры соеди­нены медными проводами. Сопротивление R установлено таким обра­зом, чтобы оно совместно с выходным сопротивлением образцового прибора было равно 0,8 – 1,0 наибольшего сопротивления термопары, указанного в инструкции по эксплуатации на поверяемый прибор, вклю­чая линии связи. По этой схеме температура свободных концов приво­дится к 30оС (это определяется номинальными значениями сопротивле­ния образцовых катушек). Тогда для любой поверяемой оцифрованной отметки шкалы из таблицы берутся значения для температуры свобод­ных концов 30оС.

При поверке потенциометров, имеющих или не имеющих манганиновой катушки применяется сема на рисунке 1б. Поверяемый прибор соединя­ется с образцовым термоэлектродным проводом. При этом с помощью ртутного термометра с ценой деления 0,1оС необходимо контролировать температуру в месте подсоединения проводов к образцовому потенцио­метру. Поверку проводят в соответствии с температурой, определяемой термометром.

Если источником напряжения служит ИРН, То поверка производится по схеме 1в. Соединение поверяемого потенциометра с ИРН выполняют термоэлектродным проводом, а образцовый прибор с ИРН – медным. В этом случае контроль температуры производится в месте подсоединения термоэлектродного провода к ИРН.

Допускается проверять потенциометр с компенсацией температуры сво­бодных концов термоэлектрического преобразователя по схеме 1б, ис­пользуя для соединения медные провода. При этом в процессе поверки следует учитывать температуру зажимов поверяемого прибора, предна­значенных для подсоединения свободных концов.


Медные провода Компенс. провода

повер. + + обр. пов. + + обр.

пот. - - пот. пот. - - пот.

а) б)

Компенс. провода Медные провода

повер. + ++ + обр.

потенц.- - - - потенц.

в) ИРН

Рис. 1.

Термопреобразователи температуры.


Термопары из хромель – алюмеля хорошо работают в восстановитель­ных и нейтральных средах. В окислительной среде на поверхности элек­тродов образуется оксидная плёнка, в результате снижается термо-э.д.с. Формулы для определения пределов допускаемых отклонений термо-э.д.с. от номинальной приведены в таблице 1. Рассчитанные по форму­лам, приведённым в таблице, пределы допускаемых отклонений термо-э.д.с. термопар от номинального должны соответствовать ГОСТ. Конст­руктивно одинарный термоэлектрический преобразователь состоит из двух термоэлектродов, имеющих общий горячий спай, и защитной арма­туры, предохраняющей термоэлектроды от повреждений и загрязнений.

Термоэлектроды по всей длине изолированы друг от друга и от металли­ческой, металлокерамической или керамической части защитной арма­туры.

Для изоляции применяются:

асбест (до 300оС)

шамот (до 1000оС)

фарфоровые трубки и бусы (1300 – 1400оС)

при более высоких температурах – трубки из окиси алюминия, окиси магния, окиси бериллия, двуокиси тория или двуокиси циркония.

Показатели тепловой инерции термопар определяют при коэффициенте теплоотдачи, практически равном бесконечности, в газовой или воздуш­ной среде должны соответствовать след. Значениям: для термопар малой инерционности – не более 10с, средней инерционности – не более 60с, большой инерционности – свыше 60с.


Тип термопр.

Усл. обозн.

Диапазон темпер,оС

Предел допускаемого отклонения,

мV.

ТХА

ХА(К)

-200 – 0

0 – 300

300 - 1300

0,08+0,3*10-3(t+200)

0,14

0,14+0,22*10-3(t-300)

ТХК

ХК(L)

-200 – 0

0 – 300

300 - 800

0,1+0,2*10-3(t+200)

0,14+0,2*10-3

0,2+0,52*10-3(t+300)


Компенсационные провода.


Известно, что термо-э.д.с., развиваемая термопарой, зависит от температуры свободных концов. Поэтому для правильной оценки температуры по шкале измеряющего прибора концы термопары “переносят” с помощью компенсационных проводов в место с более постоянной температурой, чтобы в дальнейшем автоматически или вручную вводить поправку на температуру свободных концов.

В большинстве случаев жилы компенсационных проводов изготавливают из материалов, которые при соединении развивают термо-э.д.с., одинаковую с термо-э.д.с. термопары.

Для термопар типов ХА и ХК рекомендуют следующие типы проводов:


Тип термопары

Наименование пары жил

Обозн.
Хромель - алюмель Медь – константан

М

Хромель – копель Хромель – копель

ХК


Дифманометры ДМ.


Для поверки ДМ с унифицированным выходным сигналом взаимной индуктивности применяются магазины комплексной взаимной индуктивности типа Р5017 для диапазона 0 – 10 мГн и Р5017/1 для диапазона –10 – 0 – 10 мГн.

При выборе образцового прибора для задания номинального перепада давлений при определении погрешности поверяемого дифманометр должны быть соблюдены следующие условия:

обр1*100 / hmax + обр2 ≤спов

где:

пов – предел допускаемой основной погрешности поверяемого датчика ДМ (% нормирующего значения)

обр2 - предел допускаемой основной погрешности магазина (% диапазона выходного сигнала)

обр1 - предел допускаемой основной погрешности образцового прибора при давлении, равном предельному номинальному перепаду давлений поверяемого датчика ДМ

с – коэффициент запаса точности. с=1/3 для ДМ кл.т.1 и с=1/4 для ДМ кл.т.1,5 и хуже

hmax – предельный номинальный перепад давления ДМ

Величины hmax и обр1 должны быть выражены в одних единицах.

После выбора образцовых средств для контроля задаваемого давления собирают поверочную схему.


При поверке должны выполняться следующие операции:

  1. Установка начального значения выходного параметра ДМ.

  2. Проверка герметичности.

  3. Определение основной погрешности и вариации выходной величины.

Начальное значение выходного параметра устанавливается:

0 – для ДМ с выходным сигналом 0 – 10 мГн и -10 для ДМ с выходным сигналом –10 – 0 – 10 мГн.

Погрешность установки начального значения выходного сигнала по магазину не должна превышать 0,25 абсолютного значения предела основной допустимой погрешности поверяемого ДМ.


Вторичный прибор КСД3


Перед поверкой прибор должен быть включен для прогрева не менее, чем на 2 часа и нагружен на магазин взаимной индуктивности. Поверка производится с помощью магазина взаимной индуктивности Р5017 класса точности 1 или 2 по схеме, изображённой на рисунке 2.


5 4 3 2 1

о о о о о




о о о о о о о о о


1 2 3 4 5 6 7 8 9


Рис.1

На магазине устанавливают нулевое значение. На КСД3 нажимают кнопку “Контроль”, при этом перо прибора и указатель не должны смещаться. Если смещение происходит, необходимо подвижный контакт потенциометра установить в такое положение, при котором смещение отсутствует. После этого указатель прибора следует установить на нулевую отметку шкалы.

Затем определяется основная погрешность показаний при комбинациях параметров магазина, указанных ниже:


Угол потерь

Установленное значение комплексного сопротивления первичной цепи

5о30’

1

5о30’

1’’

8о30’

1

8о30’

1’’


Основная погрешность прибора с квадратным лекалом определяется:

 = 5(Мр – М)/у

где:

М – отсчет по магазину, соответствующий поверяемой отметке шкалы, мГн.

Мр – расчётное значение взаимной индуктивности для той же отметки

у = (х-хн)/(хкн)

где:

х,хнк – соответственно поверяемая, начальная и конечная отметки шкалы

Связь между эквивалентной взаимной индуктивностью и отсчётом по шкале вторичного прибора определяется по следующей формуле:

Мр = 10у2

Основная погрешность показаний прибора типа КСД3 на всех отметках не должна превышать 1% разности пределов измерения.

Основная погрешность регистрации при нормальных условиях не должна превышать 1,6%

Вариация не должна превышать абсолютного значения основной погрешности.

Основная погрешность и вариация в диапазоне от 0 до 30% не нормируется и не проверяется. Порог чувствительности прибора не должен превышать ј абсолютного значения основной погрешности.


Импульсные линии


Измеряемая среда – газ. При измерении расхода газа дифманометр устанавливается выше сужающего устройства, так как при этом предотвращается возможность попадания конденсата из трубопровода в дифманометр. Рис.3.

Отбор давления от сужающего устройства, расположенного на горизонтальном трубопроводе, должен выполняться от верхней части трубы.

Импульсные линии на всём протяжении должны иметь односторонний уклон не менее 1:50. Если это осуществить невозможно, то в нижних точках линий и при расположении ДМ ниже СУ с целью улавливания конденсата, образующегося в импульсных трубках


Рис.3.


Прибор контроля и регистрации ФЩЛ-501


Поверка прибора проводится 1 раз в год и после среднего ремонта.

При проведении поверки должны выполняться следующие операции:

  1. Внешний осмотр.

  2. Опробование.

  3. Проверка метрологических характеристик.

    1. Проверка заходов указателя.

    2. Определение соответствующей основной погрешности по показаниям.

    3. Определение вариации.

    4. Определение соответствующей основной погрешности по регистрации.

    5. Проверка номинальных средних скоростей перемещения диаграммной ленты и отклонение их от номинального значения

    6. Проверка качества регистрации.

    7. Определение соответствия основной погрешности по сигнализации и формирования выходного позиционного сигнала .

    8. Определение соответствующей вариации по сигнализации и формирования выходного позиционного сигнала.

    9. Проверка быстродействия.


Средства поверки:

Образцовый прибор

Тип

Основные характеристики

1. Магазин сопротивлений Р4831 Кл.т. 0,02 (0-10кОм)

2. Цифровой вольтметр

постоянного тока

Ш1513

Приведённая погрешность

0.05% (10В)

3. Потенциометр пост.тока Р363/3 Кл.т 0,01
4. Гальванометр М195/3

Цена дел. 1,8*10-3А

5. Нормальный элемент НЭ-65 Кл.т. 0,005
6. Автотрансформатор Латр-2М I=2A, 0-250V
7. Секундомер

СДПпр-58

60 секунд, 60 минут
8. Обр. катушка сопротивл. Р321 Кл.т. 0,01 (10 Ом)

9. Генератор низкочастотн.

Г6-26 0,01 – 10000 Гц (0,01 Гц)
10. Частотомер ЧЗ-36 0,01 – 100 Гц
11. Термометр ТЛ-4

-30 - +20оС

12. Термостат Любой
13. Штангенциркуль Любой 0,01 мм, 250мм
14. Часы Любой

Поверка должна производиться при следующих условиях:

Температура 20+/-2оС

Влажность 30 – 80%

Атмосферное давление 630 – 800 мм вод. ст.

Напряжение питания 220+/-5В

Частота тока питания 50+/-1Гц

Максимальный коэффициент высших гармоник не более 5%

Отсутствие тряски, ударов, вибрации и т.д.

Отсутствие внешних магнитных и электрических полей.


Подготовка к поверке:

  1. Внешний осмотр.

2. Опробование (проверка работоспособности).

    1. Проверку заходов указателя за крайнюю отметку шкалы проверяют одновременно с определением соответствующей основной погрешности по показаниям и регистрации.

    2. Определение основной погрешности.

Собираем схему поверки:



ХТ1 ХТ4 220В

А1


V TV1 220В

А

ХТ2 ХТ5

ХР2



Много


о о о о о о о о о о о о

ХТ3 ХТ6

А2

220В


о о о о о о о о о о о о

Мало



Рис.4.

Где:

А1 – Поверяемое устройство

А2 – индикатор позиционных выходных сигналов НУ 094

TV1 – автотрансформатор

V – Вольтметр Э523, 0-300в, кл.т.0,5

А – амперметр Э525, кл.т. 0,5


Прогревают прибор в течение 30 минут.

Устанавливают цикл регистрации 72с.

Рассчитывают для каждой поверяемой отметки два значения входного сигнала х1 и х2 по формулам:

х1 = хном + п – qн/2 - т +

х2 = хном - п – qн/2 - т +


где:

хном – номинальное значение входного сигнала

п – абсолютное значение допустимой основной погрешности

qн – изменение входного сигнала, соответствующее шагу намотки реохорда

 - Поправка на установленное на мере значение входного сигнала(Ом), только для градуировки 50П, иначе =0

хт – термо-э.д.с. из ГОСТ

 - поправка на термоэлектродные провода с учётом знака, равная разности эдс проводов и табличных значений.

Номинальные значения хном для неравномерных шкал определяются по формулам:

хном = (Ап-Ан)/(Ак-Ан)*Д+хн

Где:

Д – нормирующее значение

Ап – значение параметра на поверяемой отметке

Ан - значение параметра в начале шкалы

Ак - значение параметра в конце шкалы


Для равномерных шкал:

Хном = Д/П*К+хн

Где:

П – число равномерных делений шкалы

К - число равномерных делений шкалы от начала шкалы до поверяемой отметки


    1. Определение вариации показаний для трёх отметок, примерно равномерно расположенных по шкале.

а) изменением входного сигнала устанавливают указатель но поверяемую отметку шкалы

б) медленным изменением входного сигнала до значения х=х34), при котором указатель начнёт перемещаться

в) медленным изменением входного сигнала до значения х=х3-Вп(х4+Вп), Вп – предел допускаемой вариации.

Указатель при этом должен установиться справа или слева от исходного положения.

    1. Соответствие основной погрешности по регулированию но 3-х линиях с отметками 0, 50, 100%

а) рассчитывают значение х5 и х6 входного сигнала, соответствующего поверяемой линии по формулам:

х5 = хн + хном – lд/lн +  -  - хт

х6 = хн + хном – lд/lн +  -  - хт

Где:

lд и lн – действительная и номинальная ширина поля регистрации

 - абсолютное значение предела допускаемой погрешности

хном – номинальное значение входного сигнала

хном = Д*с/100

с – ширина поля регистрации до поверяемой отметки.


Устанавливаем скорость 7200 мм/час, цикл регистрации 3с или 1с

При проведении со стороны меньших значений устанавливают на мере значение входного сигнала х = х5, причём от х = х5 – Вп до х = х5 входной сигнал медленно увеличиваем , включаем перемещение диаграммной ленты и производим регистрацию в течение 2 мин. Значения, регистрируемые на диаграммной ленте должны быть на линии или справа от неё.

Те же действия производим со стороны больших значений.


    1. Проверка номинальных средних скоростей.

      Скорость

      Время перемещения Расст. между отм.
      20 25ч 500+/-2,5
      60 8ч 20 мин 500+/-2,5
      180 2ч 4мин 40с 500+/-2,5
      720 41 мин 40с 500+/-2,5
      1800 16 мин 40с 500+/-2,5
      7200 4 мин 10с 500+/-2,5
    2. Качество регистрации должно позволять однозначно определить индекс (цвет) точки.

    3. Определение соответствия основной погрешности по сигнализации и выходному сигналу.

а) рассчитывают для каждой отметки шкалы два значения входного сигнала по формулам.

б) Устанавливают указатель на поверяемую отметку выбранных каналов.

в) Устанавливают цикл 1с, скорость 7200 мм/час.

г) устанавливаем значение х = х1 при этом должен загореться индикатор “Много”

д) устанавливаем значение х = х2 при этом должен погаснуть индикатор “Много”

Аналогично для “Мало”


Основная погрешность :

 = (хс – хном)/Д*100%

где:

  • - основная погрешность

хс – показатель меры входного сигнала в момент включения/выключения световой индикации.

Хном – номинальное значение соответствующей поверяемой отметки.


    1. Определение соответствующей вариации сигнализации и регулирования.

Увеличиваем(уменьшаем) входное значение до х = х78), обеспечивающих включение/выключение индикации, при этом устройство считается годным, если произойдёт переключение индикации.


    1. Проверка быстродействия.

а) Нажимают кнопку выбранного номера канала и скорости перемещения диаграммной ленты, выбирают цикл регистрации 72с.

б) Т = 1/2f

где :

f – частота генератора, при которой указатель перемещается от крайних отметок шкалы и обратно, Гц.


7. Техника безопасности


  1. Общие положения


    1. Слесарь КИПиА должен знать и выполнять требования настоящей инструкции. За несоблюдение и невыполнение их он несёт ответственность в установленном законом порядке, в зависимости от характера нарушений и их последствий.

    2. К работе слесарем КИПиА допускаются лица не моложе 18 лет, прошедшие специальное обучение, изучившие и


      29-04-2015, 03:59


Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Разделы сайта