Результати дослідження параметрів МРВ на поодиноке подразнення силою два пороги (2П) наведено в таблиці 2.
Таблиця 2
Параметри моносинаптичних рефлекторних відповідей у інтактних щурів та шурів за умов системної дії тироксину при стимуляції дорсальних корінців
Групи тварин | Параметри МРВ | ||
Амплітуда (мВ) | Поріг (мкА) | Латентний період (мс) | |
1. Інтактні тварини n=13 |
1,80±0,07 | 2,40±0,10 | 1,23±0,10 |
2. Тварини з гіпертироксинемією n=10 |
3,87±0,27 р<0,001 |
0,64±0,05 р<0,001 |
0,78±0,05 р<0,01 |
Встановлено, що за умов експериментальної гіпертироксинемії зростала збудливість моносинаптичних рефлекторних дуг.Амплітуда МРВ збільшувалась більше, ніж у 2 рази. При цьому поріг виникнення МРВ зменшувався майже в 4 рази, а латентний період зменшився в 1,5 рази.
Додатковим доказом збільшення збудливості мотонейронів в експерименті є дані щодо зростання амплітуди МРВ при збільшенні сили стимуляції від 1,2 до 2П. Ці дані систематизовано в таблиці 3.
Аналіз результатів, які наведено в таблиці 3, вказує, що зростання амплітуди МРВ відбувається значно скоріше у тварин на фоні гіпертироксинемії.
Таблиця 3
Зміни амплітуди МРВ у інтактних щурів та у щурів за умов системної дії тироксину при зростанні сили стимуляції дорсальних корінців від 1,2 до 2,0 П (% до амплітуди МРВ при подразненні стимулом в 2 П)
Групи тварин | 1,2 П | 1,4 П | 1,6 П | 1,8 П | 2,0 П |
1. Інтактні тварини n=13 |
53,3±6,9 | 72,4±7,2 | 95,2±2,0 | 100,00± 1,00 |
100,00± 1,00 |
2. Тварини з гіпертироксинемією n=10 |
87,70± 7,20 р<0,01 |
96,80± 2,10 р<0,01 |
100,10± 0,60 р<0,05 |
100,00± 1,50 p>0,05 |
100,00± 1,00 р>0,05 |
Подальший етап досліджень був пов`язаний з вивченням характеру змін ПТП за умов експериментальної гіпертироксинемії. Показано, що тривала тетанізація дорсального корінця при його подразненні пачкою з 5000 стимулів з частотою 300 Гц супроводжувалась підсиленням амплітуди МРВ упродовж майже 5 хв. У експериментальних тварин, навпаки, спостерігалась виражена депресія амплітуди МРВ (рис. 2).
В усіх випадках між групами інтактних тварин та тварин з гіпертироксинемією існує різниця з достовірністю р<0,001. Як видно з рис. 2, тривала тетанізації призводить до виразного підсилення амплітуди МРВ на протязі щонайменше 5 хв. (крива а). У випадку ж вивчення цього процесу у тварин з гіпертироксинемією, замість підсилення спостерігається виразна депресія амплітуди МРВ – на протязі 5 хв. вона навіть підсилюється (крива б).
Також додатково було з'ясовано, що в експерименті поріг і хронаксія еферентних волокон СН змінювались. У експериментальних тварин поріг винекнення потенціала дії в дистальній ділянці вентрального корінця (ВК) L5 підвищувався, а хронаксія була істотно зменшеною.
Рис. 2.Зміни амплітуди моносинаптичної рефлекторної відповіді вентрального корінця сегменту L5 спинного мозку білих щурів після нанесення подразнення пачкою в 5000 стимулів з частотою 300 Гц на дорсальний корінець цього ж сегменту.
Примітки: а – інтактні тварини (n=13); б – тварини з експериментальною гіпертироксинемією (n=10); за 100 % прийнята амплітуда МРВ на подразнення силою в 2 П до проведення тетанізації.
Вивчення метаболізму ліпідів в структурах головного мозку. Нами вивчено обмін фосфоліпідів, які являються головними компонентами біологічних мембран і мієліну. Стан мембран являється одним з найважливіших факторів підтримання гомеостазу та регуляції біохімічних та фізіологічних процесів у клітинах (Владимиров Ю.А. и др., 1972; Воскресенский О.Н., 1987; Богацкая Л.Н. и др., 1990; Бурлакова Е.Е., 1990). Фосфоліпідні фракції включають як насичені, так і ненасичені ЖК. Присутність вільних ЖК в тканинних системах, зокрема в головному мозку, інтенсивно впливає на перебіг в них метаболічних процесів.
Проведений нами газохроматографічний аналіз складу ЖК ліпідів мозку показав, що в філогенетично різних відділах головного мозку вміст вільних ЖК відрізнявся. В корі головного мозку інтактних щурів рівень насичених кислот (пентадеканової і пальмітинової) був більш високим. В стовбурі головного мозку звертало увагу підвищення рівня насиченої стеаринової кислоти (С18:0 ), а також ненасичених олеїнової (С18:1 ) і арахідонової (С20:4 ) кислот. В гіпокампі мало місце зростання концентрації олеїнової кислоти (С18:1 ). Порівняльна характеристика рівня ЖК свідчить, що в стовбурі головного мозку інтактних щурів показники насичених (С14:0 , С18:0 ), а також ненасичених (С18:1 , С18:2 і С20:4 ) ЖК були вище, ніж в гіпокампі і корі головного мозку.
Нами встановлено, що за умов експериментальної гіпертироксинемії змінюється обмін ліпідів в структурах головного мозку. Звертало увагу зниження концентрації насичених ЖК в корі головного мозку, тоді як рівень ненасичених ЖК в спектрі С18:1 - С20:4 , навпаки, зростав. Збільшувалась концентрація лінолевої (С18:2 ) кислоти в 2 рази по відношенню до контрольних тварин.
Основою ліпідного матриксу клітинних мембран являються поліненасичені ЖК, що входять до складу фосфоліпідів і зумовлюють структурні та функціональні властивості мембран. Одна з найважливіших ненасичених ЖК у складі фосфоліпідів клітинних мембран є арахідонова, рівень якої в корі головного мозку зростав на 120%. Вона являється основним джерелом синтезу ейкозаноїдів та одним із головних субстратів ПОЛ.
Дещо несподіваним, з нашої точки зору, являється результат в гіпокампі, який виконує важливу роль в процесах навчання і запам’ятовування. Так, якщо в корі головного мозку за даних умов рівень насичених ЖК (С14:0 – С18:0 ) знижувався, то в гіпокампі, навпаки, відмічено зростання концентрації ЖК в даному спектрі. При цьому рівень ненасичених кислот в гіпокампі змінювався різноспрямовано. Встановлено зниження рівню олеїнової (С18:1 ) та арахідонової (С20:4 ) кислот, та збільшення концентрації лінолевої (С18:2 ) на 162% (р<0,01) (табл. 4).
Таблиця 4
Динаміка вмісту вільних жирних кислот (мкмоль/г) в структурах головного мозку щурів за умов експериментальної гіпертироксинемії
Жирні кислоти |
Кора головного мозку М±m, % змін |
Гіпокамп М±m, % змін |
Стовбур мозку М±m, % змін |
Міристинова С14:0 Пентадеканова С15:0 Пальмітинова С16:0 Стеаринова С18:0 Олеїнова С18:1 Лінолева С18:2 Арахідонова С20:4 |
0,03±0,01 * -57 0,79 ±0,01 * -26 7,68±0,75 +7 7,22±0,62 * -42 14,65±0,53 +8 0,68±0,10 * +100 1,06±0,15 ** +120 |
0,02±0,001 ** +100 0,22±0,02 * +22 6,36±0,67 * +19 8,79±1,13 +15 16,69±1,90 -11 0,76±0,11 ** +162 1,38±0,18 ** -34 |
0,04±0,01 *** -89 0,05±0,004 *** -91 5,81±0,64 0 8,25±1,13* -56 30,96±0,83 -4 0,82±0,04* +64 1,95±0,21 ** -56 |
Примітки: наведено середнє значення та похибка середнього M±m; * - р<0,05; ** - р<0,01; *** - р<0,001 по відношенню до інтактних; n = 9.
Ці факти дають підстави стверджувати, що фосфоліпіди гіпокампу також являються об’єктом впливу ТГ. Це співпадає з більш ранніми дослідженнями (GenP. etal., 1994) щодо підвищеного рівню ТГ, які стимулюють синтез насичених ЖК і інтенсифікують процеси ПОЛ в тканинах. На думку деяких дослідників (Бурлакова Е.Б. и др., 1980), особливість окиснення ЖК в тканинах заключається в тому, що в першу чергу метаболізуються ненасичені ЖК. Це вказує на зміни рівня ненасичених (С18:1 , С20:4 ) ЖК в гіпокампі.
Аналізуючи обмін ліпідів в стовбурі головного мозку, нами встановлено, що на відміну від кори головного мозку і гіпокампу, більш виражені зміни в спектрі ЖК характерні для насичених кислот – міристинової, пентадеканової і стеаринової. Це проявилось в зниженні їх рівня в порівнянні з інтактними тваринами, тоді як характер змін в спектрі ненасичених ЖК С18:1 – С20:4 був аналогічний з такими в корі головного мозку і гіпокампі. Таким чином, зміни спектру ЖК в різних відділах головного мозку мають певну специфічність.
Будь-які зміни складу ЖК мембрани, у свою чергу, позначаються на функціях рецепторів, які беруть участь у передачі сигналів клітинами, на транспортні білки та ферменти, які розташовуються в ліпідному бішарі мембран, що підтверджено в дослідах на культурах неонатальних кардіоміоцитів.
Слід звернути увагу на ті обставини, що ТГ і катехоламіни являються похідними однієї і тієї ж амінокислоти – тирозину. Все сказане свідчить на користь передбачення про наявність загальних закономірностей в дії катехоламінів і ТГ (Воробьева Т.М., 1972; 1983; Кубарко А.И. и др., 1998).
За рівнем витрачання або накопичення поліненасичених ЖК можна оцінювати ступінь вільнорадикального окиснення ліпідів мозку, що дає можливість характеризувати стан прооксидантної та антиоксидантної систем головного мозку за умов експериментальної гіпертироксинемії.
Стан прооксидантної та антиоксидантної системи в структурах головного мозку щурів за умов експериментальної гіпертироксинемії. На сьогодні особливе значення надається вивченню процесів ПОЛ за наявності нервово-психічних розладів, які мають місце при дисфункції щитоподібної залози. Відомо, що для головного мозку характерний високий рівень ліпідів. Загальна кількість сухої речовини мозку більше, ніж на 50% складається з ліпідів. Головний мозок активно забезпечується киснем і має широкий спектр ферментів, що генерують його активні форми. Таким чином, головний мозок являється тим органом, в якому в значному ступені виконуються умови, необхідні для інтенсивного перебігу процесів ПОЛ. На це дійсно вказують дослідження (Таранова Н.П. и др., 1984; Тараканова Н.П. и др., 1994), якими встановлено, що вміст МДА в тканинах мозку був значно вищим, ніж в периферичній нервовій системі та інших органах і тканинах (таблиця 5).
Отримані нами результати корелюють з більш ранніми фактами (SilvaJ.E. etal., 1978) відносно того, що в ЦНС виявлена значна каталітична активність ферментів антирадикального захисту – каталази та глутатіонпероксидази. Встановлено також, що антиокисна активність ліпідів в різних відділах головного мозку людини значно вище, ніж в інших органах (Бурлакова Е.Б. и др., 1985) (таблиці 6 та 7).
Таблиця 5
Структури мозку |
Інтактні тварини (n=10) |
Гіпертироксинемія (n=15) |
||
ДК (довж. хвилі) Л 232 |
МДА (нмоль/мг білка) |
ДК (довж. хвилі) Л 232 |
МДА (нмоль/мг білка) |
|
Кора головного мозку Гіпокамп Стовбур мозку |
0,12±0,02 0,095±0,005 0,15±0,02 |
0,52±0,05 0,63±0,08 0,59±0,03 |
0,11±0,008*** -8% 0,13±0,003*** +37% 0,14±0,01*** -7% |
0,75±0,07*** +44% 1,07±0,1*** +70% 0,82±0,06*** +39% |
Порівняльна характеристика вмісту дієнових кон’югатів та малонового діальдегіду в структурах головного мозку при гіпертироксинемії
Примітки: наведено середнє значення та похибка середнього M±m; *** - р<0,001 по відношенню до інтактних.
Таблиця 6
Порівняльна характеристика активності каталази в утвореннях головного мозку за умов гіпертироксинемії
Структура мозку |
Активність каталази (мкат/мг білка) | |
Інтактні тварини (n=10) |
Гіпертироксинемія (n=10) |
|
Кора головного мозку М±m % змін Гіпокамп М±m % змін Стовбур мозку М±m % змін |
34,80±3,30 36,80±3,20 37,10±4,80 |
85,30±5,70 ***+145% 74,30±6,10 ***+102% 76,60±2,90 ***+106% |
Примітки: наведено середнє значення та похибка середнього M±m; *** - вірогідність результату у порівнянні з відповідним контролем при рівні достовірності р<0,001.
Таким чином, слід підкреслити, що експериментальна гіпертироксинемія у щурів характеризувалась активацією вільнорадикального окиснення в структурах головного мозку. Це проявилось зростанням вмісту як первинних продуктів – ДК в гіпокампі, так і, особливо, вторинних продуктів ПОЛ в усіх утвореннях головного мозку.
Таблиця 7
Порівняльна характеристика глутатіонпероксидази в структурах головного мозку щурів з експериментальною гіпертироксинемією
Структура мозку |
Активність глутатіонпероксидази (мкмоль/мг білка) | |
Інтактні тварини (п = 10) |
Гіпертироксинемія (п = 15) |
|
Кора головного мозку Гіпокамп Стовбур мозку |
4,10±0,30 6,30±0,55 5,60±0,50 |
8,30±0,50 *** +102% 3,70±0,50 *** -41% 7,91±0,56 *** +41% |
Примітки: наведено середнє значення та похибка середнього M±m; *** - вірогідність результату у порівнянні з відповідним контролем при рівні достовірності р<0,001.
Відомо, що вільнорадикальні реакції відіграють важливу роль у пластичних перебудовах клітин, необхідних для пристосування до змін внутрішнього та зовнішнього середовища, завдяки тому, що активні форми кисню виконують функцію вторинних месенджерів, здатних викликати експресію генів, модуляцію активності протеїнкіназ і впливати на функціональну активність клітин, що, в свою чергу, може приводити до порушення інтегративної діяльності нервової системи.
Висновки
1. Експериментальна гіпертироксинемія суттєво впливає на інтегративну діяльність ЦНС. Підвищений рівень Т4 в сироватці крові викликав порушення орієнтовно-дослідницької поведінки та умовно-рефлекторних реакцій як з боку пізнавальних, так і мнестичних показників. Також спостерігалось зниження емоційно-вегетативних реакцій.
2. За умов експериментальної гіпертироксинемії при подразненні силою в два пороги суттєво зростає збудливість моносинаптичних рефлекторних дуг, що виявлялось в зменшенні порогу виникнення рефлекторної відповіді майже в 4 рази, латентного періоду в 1,5 рази і збільшенні амплітуди МРВ більше, ніж в 2 рази. Тривала тетанізація дорсального корінця сегменту L5 спинного мозку за умов гіпертироксинемії характеризувалась депресією амплітуди моносинаптичної відповіді вентрального корінця цього ж сегменту. Виявлена значна депресія амплітуди МРВ вентрального корінця сегменту L5 спинного мозку. Одержані дані щодо групи тварин з гіпертироксинемією, відносно контролю, вказують на зниження стабільності та ефективності синаптичної передачі. Прогресивне зниження амплітуди може бути результатом "виснаження" нервових клітин через розлад метаболізму, викликаний надмірною стимуляцією ТГ.
3. Стан прооксидантної системи за умов експериментальної гіпертироксинемії в різних утвореннях головного мозку характеризувався підвищенням рівня дієнових кон’югатів в гіпокампі на 37% (р<0,001) та наростанням концентрації малонового діальдегіду, вміст якого зростав в напрямку стовбур мозку < кора головного мозку < гіпокамп.
4. За умов експериментальної гіпертироксинемії вміст жирних кислот змінювався неоднаково. В корі головного мозку рівень насичених кислот переважно знижувався, а ненасичених зростав, зокрема арахідонової (С20:4 ), концентрація якої збільшувалась на 120% (р<0,01). В гіпокампі відмічено збільшення концентрації в спектрі насичених жирних кислот. Концентрація ненасичених змінювалась різноспрямовано; рівень лінолевої кислоти (С18:2 ) зростав на 162% (р<0,01), а арахідонової (С20:4 ) знижувався на 34% (р<0,05). В стовбурі мозку більш виражені зміни встановлені відносно насичених кислот - міристинової (С14:0 ), пентадеканової і стеаринової, концентрація яких знижувалась.
5. Активність каталази за умов гіпертироксинемії в структурах головного мозку зростала. Більш високою вона була в корі головного мозку (+145%, р<0,001), в гіпокампі і стовбурі мозку вона збільшувалась, відповідно на 102% і 106% (р<0,001). Зміни активності глутатіонпероксидази характеризувались різноспрямованістю. Найбільш високою вона відмічена в корі головного мозку (+102%, р<0,001), в стовбурі мозку вона зростала на 41% (р<0,001), а в гіпокампі мало місце зниження на 41% (р<0,001). Це підтверджує наявність змін активності антиоксидантної системи в вивчаємих структурах головного мозку.
Список праць, опублікованих за темою дисертації
1. Гузь Л.В. Сравнительная характеристика процессов перекисного окисления липидов в различных отделах головного мозга крыс при гиперфункции щитовидной железы //Таврический медико-биологический вестник. – 2004. – Т.7, № 1. – С. 140 – 142.
2. Макій Є.А., Родинський О.Г., Гузь Л.В. Характер моносинаптичних рефлекторних реакцій спинного мозку білих щурів за умов системної дії тироксину та 4-амінопіридину // Експериментальна та клінічна фізіологія і біохімія. – Львів, 2004. – № 2 (26). – С. 16 – 20. (Здобувач провела експериментальну частину роботи, пов'язану із дослідженням МРВ; вивчались параметри МРВ – амплітуда, латентний період, поріг виникнення, зміни його амплітуди при зростаючій силі подразнень, ПТП).
3. Демченко О.М., Гузь Л.В. Порівняльна характеристика жирнокислотного складу ліпідів головного мозку щурів у процесі онтогенезу // Вісник Луганського національного педагогічного університету ім. Т. Шевченка. – 2005. – № 6 (86). – С. 48 – 50. (Здобувач провела експериментальну частину роботи, пов'язану із визначенням вмісту вільних жирних кислот в структурах головного мозку).
4. Гузь Л.В., Неруш П.О., Демченко О.М. Інтегративна діяльність центральної нервової системи за умов дисфункції щитоподібної залози // Вісник проблем біології і медицини. – 2004. – Вип. 3. –– С. 9 – 17. (Здобувач провела експериментальну частину роботи, пов'язану із вивченням орієнтовно-дослідницької діяльності і УРПУ за умов експериментальної гіпертироксинемії; провела аналіз отриманих даних; підготувала статтю до друку).
5. Гузь Л.В., Родинський О.Г., Гузь В.А. Характеристика збудливості еферентної ланки спинномозкових дуг за умов експериментального гіпертиреозу // Вісник морфології. – 2008. – Т. 14 (1). – С. 171 – 174.
6. Гузь Л.В., Родинський О.Г. Центральні та периферичні механізми вегетативної нервової системи // Збірка та доповіді міжнародної конференції, присвяченої пам¢яті ак. О.Г. Баклаваджяна. “Архив клинической и экспериментальной медицины”. Донецьк, 3 – 6 червня 2003 р. – Донецк, 2003. – Т. 12, № 1. –С. 33 – 34. (Здобувач провела експериментальну частину роботи, пов'язану із визначенням функціонального стану серцевої системи, провела статистичний аналіз, підготувала тези до друку).
7. Неруш П.О., Демченко О.М., Гузь Л.В., Романенко Л.А. Метаболизм фосфолипидов в мозгу и мнестические функции при тиреопатических состояниях: возрастной аспект // Тезисы докладов: “Нейронауки: теоретичні та кліничні аспекти”. Донецьк, 7-10 червня 2005 р. – С. 82 – 83. (Здобувач провела експериментальну частину роботи, пов'язану із вивченням орієнтовно-дослідницької діяльності і УРПУ; провела статистичний аналіз даних).
8. Неруш П.О., Демченко О.М., Гузь Л.В., Романенко Л.А. Особливості формування адаптивних реакцій організму за умов дисфункції щитоподібної залози // Тези доповідей II Міжнародної наукової конференції “Гомеостаз: фізіологія, патологія, фармакологія і клініка”. Одеса, 28 – 29 вересня 2005 р. – Одеса, 2005. – С. 232 – 235. (Здобувач провела експериментальну частину роботи, пов'язану із вивченням орієнтовно-дослідницької діяльності і УРПУ; провела статистичний аналіз даних).
9. Неруш П.О., Демченко О.М., Гузь Л.В. Стан вищої нервової діяльності та обмін ліпідів у головному мозку щурів за умов гіперфункції щитоподібної залози // Тези доповідей Всеукраїнської науково-практичної конференції “Проблеми вікової фізіології”. Луцьк, 29 – 30 вересня 2005 р. – Луцьк, 2005. – С. 86 – 87. (Здобувач провела експериментальну частину роботи, пов'язану із вивченням орієнтовно-дослідницької діяльності і УРПУ; провела статистичний аналіз даних).
10. Неруш П.О., Демченко О.М., Гузь Л.В., Романенко Л.А. Адаптивні механізми центральної нервової системи за умов дисфункції щитоподібної залози // Тези доповідей XVII з¢їзда Українського Фізіологічного товариства з міжнародною участю (пам¢яті ак. О.О. Богомольця). Чернівці, 18 – 20 травня 2006 р. – Чернівці, 2006. – С. 50. (Здобувач відтворила модель гіпертиреоїдного стану; провела експериментальну частину роботи, пов'язану із вивченням орієнтовно-дослідницької діяльності і УРПУ; провела статистичний аналіз даних).
11. Неруш П.О., Демченко О.М., Гузь Л.В. Нейрохімічна організація властивостей вищої нервової діяльності у щурів за умов дисфункції щитоподібної залози в процессі старіння (онтогенезу) // Тези доповідей Всеукраїнського Наукового симпозіуму до 100-річчя з дня народження В.О. Трошихіна, Черкаси, 13-15 листопада 2006р. - Черкаси, 2006. – С.76 – 77. (Здобувач провела експериментальну частину роботи, пов'язану із моделюванням гіпертиреоїдного стану та вивчення поведінкових реакцій та когнітивних розладів у щурів; провела аналіз статистичних даних).
12. Родинський О.Г., Гузь Л.В., Гузь В.А. Механизмы действия блокатора потенциал-управляемых калиевых каналов 4-аминопиридина на вызванные стимуляцией хронически денервированного седалищного нерва моносинаптические разряды, отводимые от вентрального корешка спинного мозга белых крыс // Тезисы докладов III съезда фармакологов России «Фармакология – практическому здравоохранению».Санкт-Петербург, 23 – 27 сентября 2007 г. – Санкт-Петербург, 2007. – Т. 2. – С. 1919. (Здобувач провела
8-09-2015, 19:29