Автоматизация технологических процессов основных химических производств

(2),

где: - количество тепла, передаваемое от паровой фазы и конденсата теплоносителя в единицу времени, дж/с;

- коэффициенты теплопередачи для паровой фазы и конденсата теплоносителя, дж/(м2*с);

- поверхность теплопередачи для паровой фазы и конденсата теплоносителя, м2;

- средняя движущая сила при теплопередаче от паровой фазы к жидкому технологическому потоку и от конденсата к жидкому технологическому потоку.

  • Общая тепловая нагрузка парожидкостного теплообменника:

(3).

  • Так как , то интенсивность теплопередачи от паровой фазы значительно выше, чем от конденсата.

  • Поэтому на величину Q влияет величина соотношения Fп /Fк, которая зависит от уровня конденсата:

(4а).

где и (4б).

  • На основании (4а) общая тепловая нагрузка Q также будет зависеть от уровня конденсата hк:

(4в),

  • Q(дж/с) позволяет определить Gпэфф и Gжэфф на основе тепловых балансов:

(5а);

(5б);

(6а);

(6б),

при hк =hэфф.


  • Эффективное время пребывания:

. (7).

Тепловой баланс парожидкостного теплообменника.

Уравнение динамики:


Полагаем: пар перегретый и конденсат охлаждается :

(8).

Уравнение статики при :

(9).

На основании (8) и (9) а также (6а) и (4в) можно записать:

. (10),

где , так как при Pп кип rп .


Материальный баланс по жидкой фазе

для межтрубного пространства.

Уравнение динамики:

, (11),

Уравнение статики при :

(12)

На основании (11) и (12) и предпочтительное управляющее воздействие – Gк.


Материальный баланс по паровой фазе

для межтрубного пространства.

Уравнение динамики:

(14),

где Мп - мольная масса паровой фазы теплоносителя, кг/моль;

Рп - давление паровой фазы теплоносителя, Па;

п - температура паровой фазы теплоносителя, К,

Vп - объем паровой фазы теплоносителя, м3 .

Уравнение статики при :

(15).

На основании (14) и (15) и предпочтительное управляющее воздействие - Gп.


Информационная схема объекта.



Рис.2.


  • Возможные управляющие воздействия:.


  • Возможные контролируемые возмущения: .


  • Возможные неконтролируемые возмущения: .


  • Возможные управляемые переменные: .


  • Наиболее эффективные каналы управления:


.

Анализ динамических характеристик парожидкостного теплообменника

как объекта управления температурой.

  • Исходные условия: .

  • Уравнение динамики в нормализованном виде.

(17)

  • На основе этого уравнения динамики объект по каналу описывается математической моделью апериодического звена 1-го порядка:

(18),

где: ; .

  • Объект имеет транспортное запаздывание:

(19),

где Vтруб - объем трубопровода подачи пара от Р.О. до входа в аппарат.

  • Таким образом, в целом динамика объекта по каналу управления описывается математической моделью апериодического звена 1-го порядка с запаздыванием:

(20).


Анализ статической характеристики объекта.

Из уравнения статики выразим в явном виде:

(21).

  • Статическая характеристика линейна по отношению к воздействиям по: .

  • Статическая характеристика нелинейна по отношению к воздействию по Gж.

  • Статическую характеристику можно линеаризовать по отношению к Gж введением стабилизации соотношения расходов: , тогда получим:

(22).

  • Линеаризованное представление статической характеристики через разложение в ряд Тейлора:

(23).

На основании (23) можно получить:

(24).


Схема испарителя

(кожухотрубного теплообменника с изменяющимся агрегатным состоянием

теплоносителя и технологического потока).



Рис.1.


Показатель эффективности: hж - уровень жидкой фазы в трубках испарителя.


Цель управления: поддержание .

Математическое описание на основе физики процесса.


  1. Общая тепловая нагрузка испарителя Q:

(1).

  1. На основании уравнения теплопередачи можно записать:

и


29-04-2015, 04:00


Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Разделы сайта