Автоматизация технологических процессов основных химических производств

alt="" width="800" height="145" align="ABSMIDDLE" />; т.к. при


  • При ; т.к. при

Типовая схема автоматизации испарителей.


Рис.4.


Типовое решение автоматизации испарителей.

  1. Регулирование.

  • Регулирование уровня hж по подаче греющего пара Gгр - как показателя эффективности процесса нагревания в испарителе.

  • Регулирование давления Рп по отбору паровой фазы из испарителя - для обеспечения материального баланса по паровой фазе и стабилизации rж=f(Pп).


  1. Контроль.

  • расходы - Gгр, Gп , Gж ;

  • температуры - ;

  • давление - Ргр, Рж Рп ;

  • уровень - hж


  1. Сигнализация.

  • существенные отклонения hж и Рп от заданий;

  • резкое падение расхода технологического потока Gж , при этом формируется сигнал «В схему защиты».


  1. Система защиты.

По сигналу «В схему защиты» - отключаются магистрали подачи греющего пара Gгр и отбора пара для технологических нужд.

Материалы к лекции №8

Автоматизация процесса выпаривания


Движущая сила процесса выпаривания.


  • Движущей силой процесса выпаривания является полезная разность температур полезн :


полезн = т - р-ракип (1).


  • Общая разность температур общ в процессе:


общ = т - р-лякип (2).


  • Общая разность температур общ больше полезной разности температур полезн на величину потерь :


полезн = общ -  (3),


  • Величина потерь  в процессе выпаривания:


 = г + д + гп (4),


где - г потери за счет гидростатического эффекта; д - температурная депрессия; гп - потери температуры за счет гидравлических потерь в трубопроводе.


  • На основании выражений (2) и (4) выражение (3) примет вид:

полезн = т - р-лякип -( г + д + гп ) (5).

Температурная депрессия.


  • Определение д на основании (1) и (5):


д = р-ракип - р-лякип (6).


  • Определение д по диаграммам «Р - ».


Диаграмма «Р - » для растворов и растворителей.



Рис.1.


  • Из диаграммы следует, что при P=const д = р-ракип - р-лякип


  • Расчетные соотношения для д:


  • Для концентрированных растворов недиссоциирующихся веществ:


(7),


  • Для концентрированных растворов диссоциирующихся веществ:


(8),


где R=8,31, дж/(моль*К);

cк - концентрация растворенного вещества в концентрированном растворе, моль/моль;

rпр-ля - теплота испарения растворителя, дж/моль;

р-лякип - температура кипения растворителя, К;

b - константа, определяемая опытным путем.

Объект управления

Схема выпарной установки естественной циркуляции

с вынесенной греющей камерой.



  1. греющая камера;

  2. - выпарной аппарат;

  3. брызгоулавливатель;

  4. циркуляционная труба

Рис.2.


  • Работа установки.


Исходный раствор подается по трубам кипятильника 1, где нагревается до температуры кипения с образованием парожидкостной смеси, которая далее поступает в выпарной аппарат (сепаратор) 2.

В сепараторе 2 парожидкостная смесь разделяется на паря растворителя и концентрированный раствор.

Пары растворителя проходят через брызгоулавливатель 3 и выводятся из процесса из верха сепаратора в виде парового потока Gп.

Выделенная брызгоулавливателем жидкая фаза из паров растворителя возвращается в кипятильник 1 по циркуляционной трубе 4.

Сконцентрированный раствор в виде потока Gк выводится из низа сепаратора.


  • Показатель эффективности процесса - концентрация концентрированного раствора ск.


  • Цель управления - обеспечение ск = скзд (на максимально возможном для данной установки значении).

Материальный баланс по растворенному веществу.

Уравнение динамики:

(1),

Уравнение статики :

(2)

Из выражений (1) и (2) следует:

(3),

Предпочтительное управляющее воздействие: Gр.


Тепловой баланс выпарной установки.


Уравнение динамики процесса выпаривания:

(5).

Уравнение статики при :

(6).

В выражениях (5) и (6) принято:

  • ;

  • ;

  • - количество испаряемого растворителя;

  • - удельные теплоемкости исходного и концентрированного растворов, которые не починяются закону аддитивности;

  • ,

где q - тепловой эффект растворения, определяемый на основании закона Гесса:

,

где qн и qк - интегральные теплоты растворения в начале и конце процесса.

  • На основании (5) и (6):

(7).

Предпочтительные управляющие воздействия:

  • для обеспечения теплового баланса процесса - расход теплоносителя Gт;

  • для косвенного регулирования показателя эффективности процесса - расход исходного раствора Gр.

В типовом решении автоматизации:

  • для косвенного регулирования показателя эффективности процесса выпаривания используют не температуру в аппарате, а температурную депрессию:

.

Материальный баланс по жидкой фазе (для раствора).

Уравнение динамики:

, (8),

Уравнение статики:

(9)

На основании (8) и (9):

. (10).

Предпочтительное управляющее воздействие - Gк.


Материальный баланс по паровой фазе (для раствора).


Уравнение динамики:

(11),

где Мп - мольная масса паровой фазы (растворителя),

кг/моль;

Рп - давление в сепараторе, Па;

п = к =апп - температура в сепараторе, К,

Vп - объем паровой фазы в сепараторе, м3 .

Уравнение статики:

(12).

На основании (11) и (12): и предпочтительное управляющее воздействие Gп.


Материальный баланс по жидкой фазе (для теплоносителя).


Уравнение динамики:

, (14),

Уравнение статики:

(15).

На основании (14) и (15):

. (16).

Предпочтительное управляющее воздействие - Gкт.


Материальный баланс по паровой фазе (для теплоносителя).


Уравнение динамики:

(17),

где Мп - мольная масса теплоносителя, кг/моль;

Рт мтр - давление теплоносителя в межтрубном

пространстве кипятильника, Па;

т - температура теплоносителя, К,

Vтмтр - объем паровой фазы теплоносителя в

межтрубном пространстве кипятильника, м3 .


Уравнение статики:




29-04-2015, 04:00


Страницы: 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Разделы сайта